ydata_profiling:自动生成数据探索报告的Python库

简介: ydata_profiling:自动生成数据探索报告的Python库

之前在做数据分析的时候,用过一个自动化生成数据探索报告的Python库:ydata_profiling

一般我们在做数据处理前会进行数据探索,包括看统计分布、可视化图表、数据质量情况等,这个过程会消耗很多时间,可能需要上百行代码才能实现。

ydata_profiling能够直接完成数据探索的工作,只需要几行代码,它会生成互动网页形式的报告,里面包含数据概览、字段分布、统计学特征、相关性、缺失值、样本信息等。

# 导入库
from ydata_profiling import ProfileReport
import pandas as pd
# 读取数据
df = pd.read_csv('housing.csv')
# 自动生成数据探索报告
profile = ProfileReport(df, title="Profiling Report")
profile

以上代码在Jupyter notebook中执行,生成数据探索报告如下

ydata_profiling文档提了几个用途,我觉得还是比较实用的。

  • 提供数据概览:包括广泛的统计数据和可视化图表,提供数据的整体视图。该报告可以作为html文件共享,也可以作为小部件集成在Jupyter笔记本中。
  • 数据质量评估:识别缺失数据、重复数据和异常值。这些对于数据清理和准备很重要,确保分析的可靠性,并及早发现问题。
  • 易于与其他流集成:数据分析的所有度量都可以以标准JSON格式使用。
  • 大型数据集的数据探索:即使体量很大的数据集,ydata_profiling也可以轻松生成报告,它同时支持Pandas数据帧和Spark数据帧。

数据集概览 Overview

首先可以看到数据集的整体信息,包括字段数、缺失值行、重复行、占内存大小等等

738843bb994e9845605c95ffdcbb1ac6.jpg

字段详细信息 Variables

你可以看到所有字段的统计学特征以及分布情况,包括均值、分位值、最大最小值

d75179746fdd7816699654eea47f8991.jpg 942832d1d66808baecfa8f4aa642a327.jpg

字段分布关系 Interactions

这是个交互可视化图,可以选择任意两个字段,看他们的散点分布关系,通过这个你可以很直观的知道各个字段的关联关系是什么样的,正相关、负相关、无相关等

91234ecc8b1aafed918aafcb2648bef5.jpg

字段相关性 Correations

这里通过热力图展示每个字段的相关性,也可以看到具体的值

53fe94f1fbb3dece020b634d2f142037.jpg 940115acb63939f92c789338b7cc17dd.jpg

缺失值 Missing values

通过柱状图可以清晰看到每个字段缺失值情况

56abb3e94860481ac707d2f6b567f376.jpg

样本 Sample

可以展示前10、尾10的样本数据

14b8559a71188649498c9f5121e37d89.jpg

相关文章
|
10天前
|
XML JSON 数据库
Python的标准库
Python的标准库
125 77
|
1月前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
75 0
|
24天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
73 4
数据分析的 10 个最佳 Python 库
|
11天前
|
XML JSON 数据库
Python的标准库
Python的标准库
39 11
|
24天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
97 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
11天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
52 8
|
1月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
1月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
92 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
19天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
29 4
下一篇
DataWorks