实时计算 Flink版产品使用问题之两个数据表是否可以同时进行双向的数据同步

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC里有没有flink从mysql到clickhouse的相关文档学习呀?

Flink CDC里有没有flink从mysql到clickhouse,还有mysql到mysql相关计算的demo学习一下呢?



参考答案:

关于Flink CDC从MySQL到ClickHouse以及MySQL到MySQL的相关计算Demo,阿里云社区、Apache Flink官方文档或GitHub上的开源项目中可能有实例代码供参考学习。例如,在Flink官方文档中,通常会有不同数据源和接收器的连接器配置示例,而针对特定场景下的实战案例则可能需要通过搜索相关教程或博客文章获取。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599199



问题二:Flink CDC3.0增量读取source时,是自动根据库表了么?有没有issue或者其他介绍呀?

Flink CDC3.0增量读取source时候,是自动根据库表了么,有没有issue或者其他介绍呀?



参考答案:

Flink CDC 3.0在设计上支持动态分区和并行度调整,这意味着source端读取的数据可以根据sink的并行度有效地分发到不同的TaskManager。Sink端可以配置分区策略,如基于字段值的动态分区插入,这样就可以按照表或者其他特性将数据分布到不同分区中。但是请注意,自动根据库表进行分发的具体实现细节需要查看Flink CDC最新版本的官方文档以获得准确信息。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599198



问题三:Flink CDC可以直接升级里面的Debezium版本吗 ?

Flink CDC可以直接升级里面的Debezium版本吗 ?



参考答案:

升级是需要做适配的,尤其大版本升级,接口都不一定兼容。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599197



问题四:Flink CDC里在使用rocksdb作为状态后端,并且使用全量checkpoint,不会这样吗?

Flink CDC里在使用rocksdb作为状态后端,并且使用全量checkpoint,不会触发FULL_STATE_SCAN_SNAPSHOT清理策略?



参考答案:

当使用RocksDB作为状态后端时,Flink CDC的全量checkpoint会保存所有的状态信息,包括CDC读取的offset等关键状态。关于FULL_STATE_SCAN_SNAPSHOT清理策略,它是指在某些情况下,RocksDB的状态恢复可能需要扫描所有SST文件来生成快照。然而,对于Flink CDC而言,如果正确且频繁地做checkpoint,理论上不应该触发此类全量扫描,因为它会定期持久化必要的状态,以便在故障恢复时快速定位和恢复。不过,具体的清理策略和行为可能会受到Flink版本、RocksDB配置以及其他设置的影响,因此需要查阅对应版本的文档以确认最佳实践。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599196



问题五:两个数据表能同时使用FlinkCDC来同步数据吗?A给B同步数据,B也需要给A同步,这样会冲突吗?

两个数据表能同时使用FlinkCDC来同步数据吗?A给B同步数据,B也需要给A同步,这样会冲突吗?



参考答案:

从cdc框架来说不会冲突,就是读日志和写入吧。但是业务上很可能冲突,这需要你自己判断吧。比如,是否会导致写入时主键已存在导致冲突;再比如是否会导致A表修改写入B,又从B读取写入A, 以此类推导致循环写入了。这种要根据你自身业务上来进行过滤判断吧,比如通过双流join或者维表过滤,具体的方案也没法给出来。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/599195

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
153 56
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
44 2
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
138 0
|
2月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
4月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之如何高效地将各分片存储并跟踪每个分片的消费位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版产品使用问题之如何处理数据并记录每条数据的变更
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
资源调度 Java Scala
实时计算 Flink版产品使用问题之如何实现ZooKeeper抖动导致任务失败时,能从最近的检查点重新启动任务
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之同步时,上游批量删除大量数据(如20万条),如何提高删除效率
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版
  • 下一篇
    DataWorks