问题一:flink固定延迟重试策略 可以设置3天吗 ?
flink中,
这个参数 Enable Delayed Retry Strategy For Lookup 固定延迟重试策略 可以设置3天吗 ?另外性能怎么样?
参考答案:
Flink的固定延迟重试策略可以设置3天,并且启用"Enable Delayed Retry Strategy For Lookup"后的性能表现取决于具体的应用场景和配置。
首先,关于Flink固定延迟重试策略的设置问题,Flink确实支持固定延迟重启策略,该策略会尝试给定次数来重启Job。如果超过最大重启次数,Job最终将宣告失败。在连续两次重启尝试之间,会有一个固定的延迟等待时间。这个延迟时间是可以设置的,因此理论上您可以将其设置为3天的时间长度。不过,需要注意的是,长时间的延迟可能会对作业的整体恢复时间和性能产生影响,特别是在需要快速响应和恢复的数据处理场景中。
其次,关于"Enable Delayed Retry Strategy For Lookup"固定延迟重试策略的性能,这通常与您的应用程序设计以及它如何处理延迟有关。如果应用程序未考虑潜在的延迟而设计,可能会导致性能不佳,尤其是在实时数据处理的场景中。此外,这种策略可能会影响用户体验,比如在在线游戏或视频会议等交互式应用中,用户可能感受到明显的延迟。然而,在某些情况下,例如后台数据处理或非实时作业,较长的重试延迟可能不会对性能产生显著影响。
综上所述,虽然Flink允许您设置长达3天的固定延迟重试策略,但在实际操作中,您应根据作业的性质和需求来权衡是否使用如此长的延迟时间。同时,考虑到性能的影响,建议在实施之前进行充分的测试,以确保它不会对系统的整体性能产生负面影响。
关于本问题的更多回答可点击进行查看:
https://developer.aliyun.com/ask/599605
问题二:flink source使用maxcompute的时候 筛选器会下推到maxcompute么?
flink source使用maxcompute的时候 筛选器会下推到maxcompute么?
参考答案:
我理解不会,都是数据读出来做的filter
关于本问题的更多回答可点击进行查看:
https://developer.aliyun.com/ask/599603
问题三:平台上flink sql 写hive表 有模版么?
平台上flink sql 写hive表 有模版么?
参考答案:
请参考此文档https://help.aliyun.com/zh/flink/user-guide/manage-hive-catalogs?spm=a2c4g.11174283.0.i2
关于本问题的更多回答可点击进行查看:
我理解不会,都是数据读出来做的filter
问题四:flink TM的memory大小有啥文档可以参考吗?
flink TM的memory大小有啥文档可以参考吗?
参考答案:
Flink的TaskManager内存大小可以通过配置文件进行设置,具体可以参考下文档和配置项:
taskmanager.heap.size:这个配置项用于设置TaskManager的堆内存大小。堆内存主要用于存储Java对象,由JVM的垃圾收集器管理。
- taskmanager.memory.fraction:这个配置项用于设置框架为网络缓冲区预留的内存比例。默认情况下,这个比例是0.25,意味着如果TaskManager的总内存是4GB,那么会有1GB的内存被预留给网络缓冲区。
- taskmanager.memory.off-heap:这个配置项用于设置是否使用堆外内存。堆外内存不会被JVM的垃圾收集器管理,通常用于存储需要长时间存活的数据,如缓存。
- taskmanager.memory.preallocate:这个配置项用于设置是否预分配内存。预分配内存可以减少内存分配的开销,提高性能。
- taskmanager.memory.process.size:这个配置项用于设置TaskManager进程的总内存大小。例如,可以将其设置为6GB来增加TaskManager的内存容量。
综上所述,在调整TaskManager的内存大小时,需要考虑到Job的具体需求以及集群的资源状况。合理地分配内存可以提高作业的处理效率,但也要避免过度消耗资源导致其他作业受影响。此外,还需要监控TaskManager的内存使用情况,以便及时发现并解决可能出现的内存溢出或资源不足的问题。
关于本问题的更多回答可点击进行查看:
https://developer.aliyun.com/ask/599601
问题五:flink的删除相关问题麻烦看一下?
flink的删除相关问题麻烦看一下?我数据从mysql落到holo(步骤1),然后再从holo 读取出来(步骤2),加工后再写入holo(步骤3),现在mysql这边的数据做了物理删除,但是holo的数据(步骤3)没有一起做删除 我需要holo这边也做物理删除,有没有啥方法或参数设置
参考答案:
要实现Flink在处理数据时同步删除Holo中的数据,可以考虑以下几种方法:
- 使用Flink CDC:如果使用的是Flink CDC来捕获MySQL的数据变化,确保CDC作业正常消费了删除事件。如果原始表中的数据被删除,但结果表中的数据没有被删除,可能是因为CDC作业没有正确处理删除事件。
- 使用DELETE语句:在Flink SQL中,可以直接使用DELETE语句来从结果表中删除相应的数据。这样可以根据源表的删除操作来同步更新结果表。
- 设置Debezium参数:如果使用的是Debezium作为CDC连接器,可以通过设置'debezium.skipped.operations'参数来过滤不需要的操作类型。例如,设置'debezium.skipped.operations'='c,u,t'可以跳过创建、更新和临时操作,只关注删除操作。
- RowKind类型判断:在使用Binlog作为数据源时,Flink会根据
hg_binlog_event_type
为每行数据设置准确的Flink RowKind类型。可以通过检查RowKind来确定是否为删除事件(DELETE),然后执行相应的删除操作。 - 自定义逻辑:如果上述方法不适用,可以在Flink作业中添加自定义逻辑来处理删除操作。例如,可以在数据处理过程中检查源表的删除标记,然后在Holo中执行相应的物理删除。
- 外部协调:如果Flink作业无法直接处理删除操作,可以考虑使用外部系统或工具来协调MySQL和Holo之间的数据同步和删除。
总的来说,在进行这些操作时,请确保充分测试并评估对生产环境的影响,以避免数据不一致或其他意外情况的发生。同时,建议备份相关数据,以防在处理过程中出现不可预见的问题。
关于本问题的更多回答可点击进行查看: