python中的h5py开源库的使用

简介: python中的h5py开源库的使用

一、h5py模块介绍

本文只是简单的对h5py库的基本创建文件,数据集和读取数据的方式进行介绍!如果读者需要进一步详细的学习h5py的更多知识,请参考h5py的官方文档

h5py简单介绍

一个HDF5文件是一种存放两类对象的容器:dataset和group. Dataset是类似于数组的数据集,而group是类似文件夹一样的容器,它好比python中的字典,有键(key)和值(value),存放dataset和其他group。在使用h5py的时候需要牢记一句话:groups类比字典dataset类比Numpy中的数组

HDF5的dataset虽然与Numpy的数组在接口上很相近,但是支持更多对外透明的存储特征,如:数据压缩误差检测分块传输

二、h5py模块使用

h5py创建的文件后缀名为:.hdf5

1、h5py接口简单介绍

h5py模块的使用主要分成两步走:

  • 1)创建.hdf5类型文件句柄(创建一个对象) # 读取文件把“w”改成“r”
    f=h5py.File("myh5py.hdf5","w")
  • 2)创建数据(dataset)或组(group)
    创建数据(dataset):
    f.create_dataset(self, name, shape=None, dtype=None, data=None, **kwds)
    
    创建组(group):
    create_group(self, name, track_order=False)
    

2、h5py的使用样例

  1. 创建一个h5py文件

    import h5py
    #要是读取文件的话,就把w换成r
    f=h5py.File("myh5py.hdf5","w")
    

    在当前目录下会生成一个myh5py.hdf5文件

  2. 创建dataset数据集
    ```python
    import h5py
    f=h5py.File("myh5py.hdf5","w")

    deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型

    d1=f.create_dataset("dset1", (20,), 'i')
    for key in f.keys():
    print(key)
    print(f[key].name)
    print(f[key].shape)
    print(f[key].value)

输出:
dset1
/dset1
(20,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

这里我们仅仅创建了一个存放20个整型元素的数据集,并没有赋值,默认全是0,如何赋值呢,看下面的代码。
```python
import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

d1=f.create_dataset("dset1",(20,),'i')
#赋值
d1[...]=np.arange(20)
#或者我们可以直接按照下面的方式创建数据集并赋值
f["dset2"]=np.arange(15)

for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
/dset2
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

如果我们有现成的numpy数组,那么可以在创建数据集的时候就赋值,这个时候就不必指定数据的类型和形状了,只需要把数组名传给参数data

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)
for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]

现在把这几种创建的方式混合写下。看下面的代码

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")
#分别创建dset1,dset2,dset3这三个数据集
a=np.arange(20)
d1=f.create_dataset("dset1",data=a)

d2=f.create_dataset("dset2",(3,4),'i')
d2[...]=np.arange(12).reshape((3,4))

f["dset3"]=np.arange(15)

for key in f.keys():
    print(f[key].name)
    print(f[key].value)

输出:
/dset1
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
/dset2
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
/dset3
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]

3. 创建group组

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

#创建一个名字为bar的组
g1=f.create_group("bar")

#在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。
g1["dset1"]=np.arange(10)
g1["dset2"]=np.arange(12).reshape((3,4))

for key in g1.keys():
    print(g1[key].name)
    print(g1[key].value)

输出:
/bar/dset1
[0 1 2 3 4 5 6 7 8 9]
/bar/dset2
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]

注意观察数据集dset1和dset2的名字是不是有点和前面的不一样,如果是直接创建的数据集,不在任何组里面,那么它的名字就是/+名字,现在这两个数据集都在bar这个group(组)里面,名字就变成了/bar+/名字,是不是有点文件夹的感觉!继续看下面的代码,你会对group和dataset的关系进一步了解。

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

#创建组bar1,组bar2,数据集dset
g1=f.create_group("bar1")
g2=f.create_group("bar2")
d=f.create_dataset("dset",data=np.arange(10))

#在bar1组里面创建一个组car1和一个数据集dset1。
c1=g1.create_group("car1")
d1=g1.create_dataset("dset1",data=np.arange(10))

#在bar2组里面创建一个组car2和一个数据集dset2
c2=g2.create_group("car2")
d2=g2.create_dataset("dset2",data=np.arange(10))

#根目录下的组和数据集
print(".............")
for key in f.keys():
    print(f[key].name)

#bar1这个组下面的组和数据集
print(".............")
for key in g1.keys():
    print(g1[key].name)


#bar2这个组下面的组和数据集
print(".............")
for key in g2.keys():
    print(g2[key].name)

#顺便看下car1组和car2组下面都有什么,估计你都猜到了为空。
print(".............")
print(c1.keys())
print(c2.keys())

输出:
.............
/bar1
/bar2
/dset
.............
/bar1/car1
/bar1/dset1
.............
/bar2/car2
/bar2/dset2
.............
[]
[]
目录
相关文章
|
7天前
|
XML JSON 数据库
Python的标准库
Python的标准库
119 77
|
22天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
65 4
数据分析的 10 个最佳 Python 库
|
8天前
|
XML JSON 数据库
Python的标准库
Python的标准库
35 11
|
21天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
85 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
8天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
47 8
|
16天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
28 4
|
24天前
|
测试技术 Python
Python中的异步编程与`asyncio`库
Python中的异步编程与`asyncio`库
|
14天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
13天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
95 80