深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 深度学习项目中在yaml文件中定义配置,以及使用的python的PyYAML库包读取解析yaml配置文件

1 yaml说明介绍

1.1 yaml介绍

1、百度百科对YAML解释

YAML"YAML Ain't a Markup Language"(YAML不是一种标记语言)的递归缩写。在开发的这种语言时,YAML 的意思其实是:"Yet Another Markup Language"仍是一种标记语言),但为了强调这种语言以数据做为中心,而不是以标记语言为重点,而用反向缩略语重命名。

YAML是一种数据序列化格式,优点是:

  • 对于人类可读性更友好
  • 方便与脚本语言进行交互使用

1.2 YAML 相关网址

2 YAML的python包PyYAML的使用

2.1 关于PyYAML的相关网址

PyYAML是关于一个操作yaml文件的python库包,相关网址如下:

2.2 安装PyYAML

1、安装yaml的python库包:PyYAML

pip install PyYAML

2、安装注意:

  • 1)虽然,在使用的时候是import yaml,但是安装的时候并不是直接安装yaml名的库包:pip install yaml这种安装方法是错误的,因为安装的并不是PyYAML库包
  • 2)在导入使用的时候,导入的名称为yaml,python中有很多这种安装包名和导入包名不一致的库包,例如opencv,我猜测可能是有人提前在pypi官网上传了某包名,因此导致被占用!

2.3 PyYAML快速使用

1、config.yaml配置文件中定义的可配值信息:

# train parameters setting
optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200

2、使用PyYAML模块解析config.yaml配置文件,主要步骤如下:

  • 使用open()打开config.yaml配置文件,然后使用read()读取
  • 使用yaml.load(stream, Loader)加载读取的配置文件数据,生成一个y的对象
  • 使用字典的形式访问生成的y对象中的配置信息

具体实现代码如下:

import yaml

yaml_path = "./config.yaml"

def read_yaml(yaml_path):
    # 使用open()函数读取config.yaml文件
    yaml_file = open(yaml_path, "r", encoding="utf-8")
    # 读取文件中的内容
    file_data = yaml_file.read()
    print(f"file_date type: {type(file_data)}\nfile_date value:\n{file_data}")
    yaml_file.close()

    # 加载数据流,返回字典类型数据
    y = yaml.load(file_data, Loader=yaml.FullLoader)
    print(f"y data type: {type(y)}\ny data value: {y}")

    # 下面就可以使用字典访问配置文件中的数据了
    print(f"optimization: {y['optimization']}")
    print(f"learning_rate: {y['learning_rate']}")
    print(f"batch_size: {y['batch_size']}")
    print(f"epoch: {y['epoch']}")

    optimization = y['optimization']
    learning_rate = y['learning_rate']
    batch_size = y['batch_size']
    epoch = y['epoch']

    print(type(optimization))
    print(type(learning_rate))
    return optimization, learning_rate, batch_size, epoch



if __name__ == '__main__':
    read_yaml(yaml_path)

输出结果

file_date type: <class 'str'>
file_date value:
# train parameters setting
optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200

y data type: <class 'dict'>
y data value: {
   'optimization': 'Adam', 'learning_rate': 0.001, 'batch_size': 64, 'epoch': 200}

optimization: Adam
learning_rate: 0.001
batch_size: 64
epoch: 200
<class 'str'>
<class 'float'>
目录
相关文章
|
5天前
|
存储 运维 安全
Spring运维之boot项目多环境(yaml 多文件 proerties)及分组管理与开发控制
通过以上措施,可以保证Spring Boot项目的配置管理在专业水准上,并且易于维护和管理,符合搜索引擎收录标准。
17 2
|
9天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
9天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
21 2
|
8天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
25 0
|
2月前
|
JSON Kubernetes API
深入理解Kubernetes配置:编写高效的YAML文件
深入理解Kubernetes配置:编写高效的YAML文件
|
5月前
|
存储 运维 Serverless
函数计算产品使用问题之在YAML文件中配置了环境变量,但在PHP代码中无法读取到这些环境变量,是什么原因
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
1月前
|
Kubernetes 应用服务中间件 nginx
k8s学习--YAML资源清单文件托管服务nginx
k8s学习--YAML资源清单文件托管服务nginx
k8s学习--YAML资源清单文件托管服务nginx
|
1月前
|
Kubernetes Docker Perl
k8s常见故障--yaml文件检查没有问题 pod起不来(一直处于创建中)
k8s常见故障--yaml文件检查没有问题 pod起不来(一直处于创建中)