C++ PCL 求两个平面的交线

简介: C++ PCL 求两个平面的交线
#include <iostream>
#include <pcl/common/common.h>
#include <pcl/common/geometry.h>
#include <pcl/visualization/pcl_visualizer.h>

int main() {
    // 定义两个平面的法向量
    Eigen::Vector3f normal_plane1(1.0f, 0.0f, 0.0f);  // 第一个平面的法向量
    Eigen::Vector3f normal_plane2(0.0f, 1.0f, 0.0f);  // 第二个平面的法向量

    // 计算平面之间的交线
    Eigen::Vector3f line_direction = normal_plane1.cross(normal_plane2);  // 交线的方向向量

    std::cout << "Direction of intersection line: " << line_direction.transpose() << std::endl;

    // 选择一个平面作为基准点和另一个平面的法向量
    Eigen::Vector3f point_on_plane1(0.0f, 0.0f, 0.0f);  // 第一个平面上的一个点(可以是任意一个)
    float t = 100.0f;  // 参数化方程中的参数 t,可以根据具体需求进行调整

    // 计算交线上的一个点
    Eigen::Vector3f point_on_intersection_line = point_on_plane1 + t * line_direction;

    std::cout << "Point on intersection line: " << point_on_intersection_line.transpose() << std::endl;

    // 可视化部分
    pcl::visualization::PCLVisualizer viewer("Intersection Line Viewer");

    // 添加第一个平面
    pcl::ModelCoefficients plane1_coeff;
    plane1_coeff.values.push_back(normal_plane1.x());
    plane1_coeff.values.push_back(normal_plane1.y());
    plane1_coeff.values.push_back(normal_plane1.z());
    plane1_coeff.values.push_back(0.0);  // 偏移量设为0,表示过原点
    viewer.addPlane(plane1_coeff, "plane1");
    viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "plane1");

    // 添加第二个平面
    pcl::ModelCoefficients plane2_coeff;
    plane2_coeff.values.push_back(normal_plane2.x());
    plane2_coeff.values.push_back(normal_plane2.y());
    plane2_coeff.values.push_back(normal_plane2.z());
    plane2_coeff.values.push_back(0.0);  // 偏移量设为0,表示过原点
    viewer.addPlane(plane2_coeff, "plane2");
    viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "plane2");

    // 添加交线
    pcl::PointXYZ line_start(point_on_plane1.x(), point_on_plane1.y(), point_on_plane1.z());
    pcl::PointXYZ line_end(point_on_intersection_line.x(), point_on_intersection_line.y(), point_on_intersection_line.z());
    viewer.addLine(line_start, line_end, 1.0, 1.0, 1.0, "intersection_line");

    // 设置视角和渲染
    viewer.addCoordinateSystem(1.0);
    viewer.setBackgroundColor(0.1, 0.1, 0.1);
    viewer.initCameraParameters();

    // 显示窗口
    while (!viewer.wasStopped()) {
        viewer.spinOnce();
    }

    return 0;
}
目录
相关文章
|
C++
C++ PCL 沿着自定义的平面做横截面(直通滤波)
C++ PCL 沿着自定义的平面做横截面(直通滤波)
196 0
|
C++
C++ PCL SACSegmentationFromNormals setAxis 轴向的选择
C++ PCL SACSegmentationFromNormals setAxis 轴向的选择
281 2
|
C++
C++ PCL 将一个点云投影到一个由法向量和点确定的平面
C++ PCL 将一个点云投影到一个由法向量和点确定的平面
531 0
|
C++
C++ PCL 计算多个RT矩阵变换后的变换矩阵
C++ PCL 计算多个RT矩阵变换后的变换矩阵
217 0
|
传感器 算法 C++
C++ PCL 设置法向量的方向
C++ PCL 设置法向量的方向
321 0
|
10月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
174 0
|
6月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
266 0
|
8月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
308 12
|
9月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
182 16