Pytorch NCHW/NHWC 的理解

简介: Pytorch NCHW/NHWC 的理解

PyTorch中的NCHW(通道-高度-宽度)和NHWC(高度-宽度-通道)是描述张量存储布局的两种方式,主要用于表示多维张量在内存中的存储顺序。理解它们对于深度学习任务中的张量操作和性能优化非常重要。

NCHW 和 NHWC 的含义

NCHW:

N: Batch size(批大小),表示在一个张量中处理的样本数量。
C: Channels(通道数),表示特征图中的通道数,例如RGB图像为3。
H: Height(高度),表示特征图的高度。
W: Width(宽度),表示特征图的宽度。


在NCHW布局中,数据的通道维度是紧跟在样本维度后面的,每个通道的像素值连续存储。

NHWC:

N: Batch size(批大小),表示在一个张量中处理的样本数量。
H: Height(高度),表示特征图的高度。
W: Width(宽度),表示特征图的宽度。
C: Channels(通道数),表示特征图中的通道数。


在NHWC布局中,每个像素的所有通道值是连续存储的,通道维度是最内层的。

理解和选择

计算效率:

NCHW 在许多GPU架构上效率更高,因为可以更有效地利用并行计算单元(如CUDA核心),特别是对于卷积操作。


NHWC 在某些情况下可能更适合CPU上的计算,因为一些CPU指令集更适合于按通道处理数据。

模型和库的兼容性:

某些深度学习框架和库可能更喜欢或更高效地使用特定的布局,因此在选择时需要考虑到模型的部署环境和所使用的库。

在PyTorch中的应用

在PyTorch中,默认情况下张量是以NCHW的格式进行存储的。可以通过转置操作(.permute())来在NCHW和NHWC之间进行转换。例如:

import torch

# 创建一个4维张量,尺寸为(N, C, H, W)
x = torch.randn(32, 3, 224, 224)

# 转换为NHWC格式
x_nhwc = x.permute(0, 2, 3, 1)

# 再转换回NCHW格式
x_nchw = x_nhwc.permute(0, 3, 1, 2)

总结

选择合适的张量存储布局对于深度学习任务的效率和性能至关重要。NCHW和NHWC的选择取决于所使用的硬件和库的要求,同时也可以通过PyTorch提供的张量操作来进行灵活的转换和适配。

目录
相关文章
|
并行计算 TensorFlow 调度
推荐场景GPU优化的探索与实践:CUDA Graph与多流并行的比较与分析
RTP 系统(即 Rank Service),是一个面向搜索和推荐的 ranking 需求,支持多种模型的在线 inference 服务,是阿里智能引擎团队沉淀多年的技术产品。今年,团队在推荐场景的GPU性能优化上又做了新尝试——在RTP上集成了Multi Stream,改变了TensorFlow的单流机制,让多流的执行并行,作为增加GPU并行度的另一种选择。本文详细介绍与比较了CUDA Graph与多流并行这两个方案,以及团队的实践成果与心得。
|
机器学习/深度学习 存储 并行计算
一篇就够:高性能推理引擎理论与实践 (TensorRT)
本文分享了关于 NVIDIA 推出的高性能的深度学习推理引擎 TensorRT 的背后理论知识和实践操作指南。
14618 9
一篇就够:高性能推理引擎理论与实践 (TensorRT)
|
存储 缓存 算法框架/工具
从GPU的内存访问视角对比NHWC和NCHW
NHWC和NCHW是卷积神经网络(cnn)中广泛使用的数据格式。它们决定了多维数据,如图像、点云或特征图如何存储在内存中。
609 4
|
3月前
|
机器学习/深度学习 存储 自然语言处理
NLP参数高效迁移学习:Adapter方法——论文简读
本研究深入探讨了自然语言处理中参数高效的迁移学习方法——Adapter。通过在预训练模型中引入小型可训练模块,仅调整少量额外参数即可完成模型适配。理论分析表明,该方法在初始化时保持网络行为稳定,并通过瓶颈结构大幅压缩参数规模。实验结果显示,Adapter在GLUE基准上仅用3.6%的参数便达到接近全微调的性能,且对学习率具有更强的鲁棒性。相比传统微调和其他参数高效方法,Adapter在多任务场景下展现出更优的存储效率与泛化能力,为大规模模型的实际部署提供了高效可行的解决方案。
244 7
|
机器学习/深度学习 人工智能 API
如何在c++侧编译运行一个aclnn(AOL)算子?
CANN的AOL库提供了一系列高性能算子API,优化了昇腾AI处理器的调用流程。通过两段式接口设计,开发者可以高效地调用算子库API,实现模型创新与应用,提升开发效率和模型性能。示例中展示了如何使用`aclnnAdd`算子,包括环境初始化、算子调用及结果处理等步骤。
|
机器学习/深度学习 PyTorch TensorFlow
Pytorch学习笔记(二):nn.Conv2d()函数详解
这篇文章是关于PyTorch中nn.Conv2d函数的详解,包括其函数语法、参数解释、具体代码示例以及与其他维度卷积函数的区别。
2812 0
Pytorch学习笔记(二):nn.Conv2d()函数详解
|
传感器 机器学习/深度学习 弹性计算
Agent与大模型的区别
本文详细对比了人工智能领域的两个重要概念——Agent和大模型。大模型如GPT-3、BERT等,擅长自然语言处理任务,如文本生成、翻译等;Agent则是自主的软件实体,能够在特定环境中感知、决策并执行任务,如管理日程、控制智能家居等。文章介绍了它们的定义、功能、技术架构及应用场景,并总结了两者的核心差异和未来发展方向。
7555 26
|
Ubuntu Unix Shell
sh执行脚本报错Syntax error: “(“ unexpected ​的两种解决办法
​sh执行脚本报错Syntax error: “(“ unexpected ​的两种解决办法
|
存储 机器学习/深度学习 人工智能
深入浅出 AI 智能体(AI Agent)|技术干货
随着人工智能技术的发展,智能体(AI Agents)逐渐成为人与大模型交互的主要方式。智能体能执行任务、解决问题,并提供个性化服务。其关键组成部分包括规划、记忆和工具使用,使交互更加高效、自然。智能体的应用涵盖专业领域问答、资讯整理、角色扮演等场景,极大地提升了用户体验与工作效率。借助智能体开发平台,用户可以轻松打造定制化AI应用,推动AI技术在各领域的广泛应用与深度融合。
31153 1
|
人工智能 JavaScript 开发工具
【完全免费】VS Code 最好用的 12 款 AI 代码提示插件!!!
🎉 探索12款免费VSCode AI代码提示插件:Codeium、Codegeex、CodeFuse、TONGYI Lingma、Comate、iFlyCode、Fitten Code、Bito AI、Mintlify Doc Writer、Kodezi AI、aiXcoder、IntelliCode。这些插件提供智能补全、代码生成、注释、优化,支持多种语言,提升编程效率!🚀👩‍💻👨‍💻
18513 0