Python多维列表(元组)合并成一维形式

简介: Python多维列表(元组)合并成一维形式

一.需求

原格式:

input=[[1,2,3],[4,5,6],[7,8,9]]

目标格式:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

二.方法

1.sum函数合并

input=[[1,2,3],[4,5,6],[7,8,9]]
output=sum(input,[])
print(output)

#结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9]

这个看上去很简洁,不过有类似字符串累加的性能陷阱。

2.reduce函数

from functools import reduce

input=[[1,2,3],[4,5,6],[7,8,9]]
output=reduce(list.__add__, input)
print(output)

#结果[1, 2, 3, 4, 5, 6, 7, 8, 9]

做序列的累加操作。也是有累加的性能陷阱。

3.列表推导式

input=[[1,2,3],[4,5,6],[7,8,9]]
output=[item for sublist in input for item in sublist]
print(output)

#结果
[1, 2, 3, 4, 5, 6, 7, 8, 9]

列表推导式,看着有些长,而且还要for循环两次,变成一行理解需要费劲一些,没有那么直观

4.itertools 类库

import itertools
input=[[1,2,3],[4,5,6],[7,8,9]]
ouput=list(itertools.chain(*input))
print(ouput)

#结果
[1, 2, 3, 4, 5, 6, 7, 8, 9]

三.性能对比


python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 3: 51.2 usec per loop

python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'reduce(list.__add__,l)'
1000 loops, best of 3: 572 usec per loop

python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 3: 545 usec per loop

python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99; import itertools;' 'list(itertools.chain(*l))'
10000 loops, best of 3: 35.1 usec per loop
相关文章
|
3天前
|
C语言 Python
[oeasy]python054_python有哪些关键字_keyword_list_列表_reserved_words
本文介绍了Python的关键字列表及其使用规则。通过回顾`hello world`示例,解释了Python中的标识符命名规则,并探讨了关键字如`if`、`for`、`in`等不能作为变量名的原因。最后,通过`import keyword`和`print(keyword.kwlist)`展示了Python的所有关键字,并总结了关键字不能用作标识符的规则。
23 9
|
11天前
|
数据挖掘 大数据 数据处理
python--列表list切分(超详细)
通过这些思维导图和分析说明表,您可以更直观地理解Python列表切分的概念、用法和实际应用。希望本文能帮助您更高效地使用Python进行数据处理和分析。
23 14
|
13天前
|
数据挖掘 大数据 数据处理
python--列表list切分(超详细)
通过这些思维导图和分析说明表,您可以更直观地理解Python列表切分的概念、用法和实际应用。希望本文能帮助您更高效地使用Python进行数据处理和分析。
29 10
|
1月前
|
数据处理 开发者 Python
Python中的列表推导式:简洁高效的数据处理
在编程世界中,效率和可读性是代码的两大支柱。Python语言以其独特的简洁性和强大的表达力,为开发者提供了众多优雅的解决方案,其中列表推导式便是一个闪耀的例子。本文将深入探讨列表推导式的使用场景、语法结构及其背后的执行逻辑,带你领略这一特性的魅力所在。
|
1月前
|
开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第41天】 在编程的世界中,效率与简洁是永恒的追求。本文将深入探讨Python编程语言中一个独特且强大的特性——列表推导式(List Comprehension)。我们将通过实际代码示例,展示如何利用这一工具简化代码、提升性能,并解决常见编程问题。无论你是初学者还是资深开发者,掌握列表推导式都将使你的Python之旅更加顺畅。
|
1月前
|
Python
探索Python中的列表推导式
【10月更文挑战第38天】本文深入探讨了Python中强大而简洁的编程工具——列表推导式。从基础使用到高级技巧,我们将一步步揭示如何利用这个特性来简化代码、提高效率。你将了解到,列表推导式不仅仅是编码的快捷方式,它还能帮助我们以更加Pythonic的方式思考问题。准备好让你的Python代码变得更加优雅和高效了吗?让我们开始吧!
|
2月前
|
Python
探索Python中的列表推导式
【10月更文挑战第20天】在编程世界里,时间就是一切。Python的列表推导式是节约时间、简化代码的一大利器。本文将带你深入理解并有效利用这一强大工具,从基础到高级用法,让你的代码更加简洁高效。
|
1月前
|
Python
SciPy 教程 之 SciPy 模块列表 13
SciPy教程之SciPy模块列表13:单位类型。常量模块包含多种单位,如公制、二进制(字节)、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例代码展示了如何使用`constants`模块获取零摄氏度对应的开尔文值(273.15)和华氏度与摄氏度的转换系数(0.5556)。
19 1
|
1月前
|
弹性计算 安全 数据处理
Python高手秘籍:列表推导式与Lambda函数的高效应用
列表推导式和Lambda函数是Python中强大的工具。列表推导式允许在一行代码中生成新列表,而Lambda函数则是用于简单操作的匿名函数。通过示例展示了如何使用这些工具进行数据处理和功能实现,包括生成偶数平方、展平二维列表、按长度排序单词等。这些工具在Python编程中具有高度的灵活性和实用性。
35 2
|
2月前
|
Python
SciPy 教程 之 SciPy 模块列表 9
SciPy教程之常量模块介绍,涵盖多种单位类型,如公制、质量、角度、时间、长度、压强等。示例展示了如何使用`scipy.constants`模块查询不同压强单位对应的帕斯卡值,包括atm、bar、torr、mmHg和psi。
16 1