解决方案|10分钟构建AI客服并应用到聊天系统中 评测

简介: 评测

一, 物流
物流运输是物品流通的一种手段,是指货物由加工地,产出地通过配备合适的运输工具,选择最佳运输路径,并配以最优货物到货物需求地的一种传递方式。既是商品流通的手段,同时也是维系当地国民经济发展的有效“枢纽”。
二, 物流模式
作为物流“运输大动脉”的物流公司,对外实现客户,市场,车队的扩展,延伸,对内实现货物,库存,运输路径的跟踪,梳理,从而实现产,销,存,货,车,运的有效衔接,在当地的国民经济中占据举足轻重地位。2018年以来,随着国家改革发展需求模式的转变,响应集团业务整合要求,并受国家环保及交通运输部门的管控影响,先后完成了汽运车辆国三,国四类型的逐步淘汰,取而代之为国五,国六,天然气等新能源汽车作为道路运输标准,而火运方面则实现了由敞车运输到集装箱运输的有效过渡。
三, 物流运输流程管理
传统物流业,其业务流程办理主要以人工操作为主,其提货,送货方面主要以纸质提货单为主要货物流通,运输,签收及售后服务凭证,其纸张的浪费成为了现阶段物流运输行业成本浪费的主要原因。其次,在有新户需要办理运输业务时,需现场进行车辆办理,如遇办理人员外出办公不在工位情况,办理人员需等待,从而影响了业务办理节奏,延误了运输时间,降低了物流运输质量。
四,物流行业存在的问题
2020年以来,受新型冠状病毒影响,企业封控,人员被隔离封控于单位及住所等地,企业运营状况等不到全员的信息共享,给企业的发展带来了诸多不便。同时也给当地的国民经济带来了滞后影响。同时,组织架构的调整,新业务的出现,新管理理念的转变等新运营模式成为了后疫情时代企业发展的主要问题。新旧矛盾与业务如何有效过渡,后续业务如何有效开展,成为了现阶段的主要关注点。
五, 平台管理
通过信息化平台,进行业务流程办理及梳理,根据实际的业务办理模式完成审批流程搭建操作,实现了由线下业务向线上业务的有效过渡,提高了业务流程,简化了工艺操作,实现了远程业务办理新模式,为企业的降本增效和提质增效奠定了扎实基础。同时,也实现了传统物流向智慧物流,智能化物流,数字化物流的传递。2022年以来,结合集团转型升级,组织架构调整需要,物流运输业实现了业务,人员的有效划转及过渡,开启了厂外物流运输“大循环”模式,同时,借助95306平台,开启了铁路集装箱运营新模式。
六,AI技术及使用
AI技术,俗称人工智能技术,其主要通过设定机器人,对智能机器人进行培训学习,内容及材料填充,使之产生学习记忆,从而有效完成对过去一段时间内所完成的工作,任务进行有效存储,实现今后时期内对工作,任务的重新整理。从而达到人机对话来实现问题答案的技术形式。
AI智能助理⽀持⼯作流作为⾼级能⼒,实现⽤户个性化的场景需求,可以通过⼯作流进⾏任务的编排,最后通过AI对话执⾏对应的⼯作流程。
例如:
收集⽤户反馈场景:⽤户和AI对话,通过AI解析出需要收集的信息并分类,例如反馈详情、反馈原因等,通过多维表写⼊反馈数据,给⽤户发送通知同时返回多维表链接。
收集业务明细:通过智能学习,使之产生对前期物流运输业务货物,库存,运输及线路等记忆衔接,与AI对话,通过机器人记忆进行对话答疑。
七,工作流
工作流是将整个业务的部分或全部,通过计算机平台进行完成处理的技术形式,是自动化应用下的新工作模式。其主要应用背景:2018年,随着国家环保要求及交通运输管控影响,国三,国四车辆逐步淘汰,取而代之为国六,天然气等新能源运输车辆为主要道路运输模式,与此同时,新型物流运输人员(司机)便成为了运输行业中的“新物流人”。由于“新物流人”对业务的不熟悉,业务流程的不清晰,会导致整体物流运输业务滞后影响,同时考虑到后疫情时代的物流运输行业发展态势,需要对前期业务进行梳理,学习。因此,“师长及物流运输人员”通过自身对物流运输业务办理,运输道路选择上进行记录,备案,并对原有模式下对物流运输事业的分析及对未来发展态势的理解,通过AI助理进行信息上传,使机器人产生记忆,这样,“新物流人”可以根据业务实际通过AI对话功能实现。具体操作如下:
打开AI助理市场—点击“开始创作和分享”

目录
相关文章
|
2天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
9 1
|
2天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
10 1
|
2天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗诊断中的应用
【10月更文挑战第23天】随着人工智能技术的不断发展,AI在医疗领域的应用也日益广泛。本文将介绍AI在医疗诊断中的一些应用,包括医学影像分析、病理诊断、基因数据分析等。通过这些应用,我们可以更好地理解AI技术在医疗诊断中的价值和潜力。
|
22天前
|
存储 自然语言处理 机器人
实战揭秘:当RAG遇上企业客服系统——从案例出发剖析Retrieval-Augmented Generation技术的真实表现与应用局限,带你深入了解背后的技术细节与解决方案
【10月更文挑战第3天】随着自然语言处理技术的进步,结合检索与生成能力的RAG技术被广泛应用于多个领域,通过访问外部知识源提升生成内容的准确性和上下文一致性。本文通过具体案例探讨RAG技术的优势与局限,并提供实用建议。例如,一家初创公司利用LangChain框架搭建基于RAG的聊天机器人,以自动化FAQ系统减轻客服团队工作负担。尽管该系统在处理简单问题时表现出色,但在面对复杂或多步骤问题时存在局限。此外,RAG系统的性能高度依赖于训练数据的质量和范围。因此,企业在采用RAG技术时需综合评估需求和技术局限性,合理规划技术栈,并辅以必要的人工干预和监督机制。
51 3
|
3月前
|
数据采集 监控 测试技术
大型IM稳定性监测实践:手Q客户端性能防劣化系统的建设之路
本文以iOS端为例,详细分享了手 Q 客户端性能防劣化系统从0到1的构建之路,相信对业界和IM开发者们都有较高的借鉴意义。
111 2
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI技术在智能客服系统中的应用与挑战
【9月更文挑战第32天】本文将探讨AI技术在智能客服系统中的应用及其面临的挑战。我们将分析AI技术如何改变传统客服模式,提高服务质量和效率,并讨论在实际应用中可能遇到的问题和解决方案。
179 65
|
25天前
|
存储 安全 开发工具
百度公共IM系统的Andriod端IM SDK组件架构设计与技术实现
本文主要介绍了百度公共IM系统的Andriod端IM SDK的建设背景、IM SDK主要结构和工作流程以及建设过程遇到的问题和解决方案。
39 3
|
2月前
|
数据挖掘 API
如何选择适合的售后工单管理系统
选择合适的售后工单管理系统需评估需求和预算,考察功能、技术支持及服务商可靠性,并全面试用评估。ZohoDesk适合初创和中小企业,具备强大的工单管理、报告分析及可定制性,助力提升服务质量和客户体验。通过合适系统,企业不仅能优化客户服务流程,还能通过数据分析支持决策,推动长远发展。
58 16
|
2月前
|
人工智能 自然语言处理 前端开发
从客服场景谈:大模型如何接入业务系统
本文探讨了大模型在AI客服中的应用。大模型虽具有强大的知识生成能力,但在处理具体业务如订单咨询、物流跟踪等问题时,需结合数据库查询、API调用等手段。文章提出用Function Call连接大模型与业务系统,允许大模型调用函数获取私域知识。通过具体示例展示了如何设计系统提示词、实现多轮对话、定义Function Call函数,并利用RAG技术检索文档内容。最后,展示了该方案在订单查询和产品咨询中的实际效果。
|
24天前
|
前端开发 JavaScript PHP
Thinkphp在线客服系统源码多语言外贸版_PHP客服系统源码Uniapp开发搭建+论文设计
Thinkphp在线客服系统源码多语言外贸版_PHP客服系统源码Uniapp开发搭建+论文设计

热门文章

最新文章