n种方式教你用python读写excel等数据文件

简介: n种方式教你用python读写excel等数据文件

python处理数据文件的途径有很多种,可以操作的文件类型主要包括文本文件(csv、txt、json等)、excel文件、数据库文件、api等其他数据文件。

下面整理下python有哪些方式可以读写数据文件。

1. read、readline、readlines

  • read()  :一次性读取整个文件内容。推荐使用read(size)方法,size越大运行时间越长
  • readline()  :每次读取一行内容。内存不够时使用,一般不太用
  • readlines()   :一次性读取整个文件内容,并按行返回到list,方便我们遍历

具体用法可见:一文搞懂python文件读写

2. 内置模块csv

python内置了csv模块用于读写csv文件,csv是一种逗号分隔符文件,是数据科学中最常见的数据存储格式之一。csv模块能轻松完成各种体量数据的读写操作,当然大数据量需要代码层面的优化。

  • csv模块读取文件
# 读取csv文件
import csv
with open('test.csv','r') as myFile:
    lines=csv.reader(myFile)
    for line in lines:
        print (line)
  • csv模块写入文件
import csv
with open('test.csv','w+') as myFile:
    myWriter=csv.writer(myFile)
    # writerrow一行一行写入
    myWriter.writerow([7,8,9])
    myWriter.writerow([8,'h','f'])
    # writerow多行写入
    myList=[[1,2,3],[4,5,6]]
    myWriter.writerows(myList)


3. numpy库

  • loadtxt方法

loadtxt用来读取文本文件(包含txt、csv等)以及.gz 或.bz2格式压缩文件,前提是文件数据每一行必须要有数量相同的值。

import numpy as np
# loadtxt()中的dtype参数默认设置为float
# 这里设置为str字符串便于显示
np.loadtxt('test.csv',dtype=str)
# out:array(['1,2,3', '4,5,6', '7,8,9'], dtype='<U5')
  • load方法

load用来读取numpy专用的.npy, .npz 或者pickled持久化文件。

import numpy as np
# 先生成npy文件
np.save('test.npy', np.array([[1, 2, 3], [4, 5, 6]]))
# 使用load加载npy文件
np.load('test.npy')
'''
out:array([[1, 2, 3],
       [4, 5, 6]])
'''
  • fromfile方法

fromfile方法可以读取简单的文本数据或二进制数据,数据来源于tofile方法保存的二进制数据。读取数据时需要用户指定元素类型,并对数组的形状进行适当的修改。

import numpy as np
x = np.arange(9).reshape(3,3)
x.tofile('test.bin')
np.fromfile('test.bin',dtype=np.int)
# out:array([0, 1, 2, 3, 4, 5, 6, 7, 8])


4. pandas库

pandas是数据处理最常用的分析库之一,可以读取各种各样格式的数据文件,一般输出dataframe格式。如:txt、csv、excel、json、剪切板、数据库、html、hdf、parquet、pickled文件、sas、stata等等

  • read_csv方法read_csv方法用来读取csv格式文件,输出dataframe格式。
import pandas as pd
pd.read_csv('test.csv')
  • read_excel方法

读取excel文件,包括xlsx、xls、xlsm格式

import pandas as pd
pd.read_excel('test.xlsx')
  • read_table方法

通过对sep参数(分隔符)的控制来对任何文本文件读取

  • read_json方法

读取json格式文件

df = pd.DataFrame([['a', 'b'], ['c', 'd']],index=['row 1', 'row 2'],columns=['col 1', 'col 2'])
j = df.to_json(orient='split')
pd.read_json(j,orient='split')
  • read_html方法

读取html表格

  • read_clipboard方法

读取剪切板内容

  • read_pickle方法

读取plckled持久化文件

  • read_sql方法

读取数据库数据,连接好数据库后,传入sql语句即可

  • read_dhf方法

读取hdf5文件,适合大文件读取

  • read_parquet方法

读取parquet文件

  • read_sas方法

读取sas文件

  • read_stata方法

读取stata文件

  • read_gbq方法

读取google bigquery数据

pandas学习网站:https://pandas.pydata.org/

5、读写excel文件

python用于读写excel文件的库有很多,除了前面提到的pandas,还有xlrd、xlwt、openpyxl、xlwings等等。

主要模块:

  • xlrd库

从excel中读取数据,支持xls、xlsx

  • xlwt库

对excel进行修改操作,不支持对xlsx格式的修改

  • xlutils库

在xlw和xlrd中,对一个已存在的文件进行修改

  • openpyxl

主要针对xlsx格式的excel进行读取和编辑

  • xlwings

对xlsx、xls、xlsm格式文件进行读写、格式修改等操作

  • xlsxwriter

用来生成excel表格,插入数据、插入图标等表格操作,不支持读取

  • Microsoft Excel API

需安装pywin32,直接与Excel进程通信,可以做任何在Excel里可以做的事情,但比较慢

6. 操作数据库

python几乎支持对所有数据库的交互,连接数据库后,可以使用sql语句进行增删改查。

主要模块:

  • pymysql

用于和mysql数据库的交互

  • sqlalchemy

用于和mysql数据库的交互

  • cx_Oracle

用于和oracle数据库的交互

  • sqlite3

内置库,用于和sqlite数据库的交互

  • pymssql

用于和sql server数据库的交互

  • pymongo

用于和mongodb非关系型数据库的交互

  • redis、pyredis

用于和redis非关系型数据库的交互

目录
相关文章
|
9天前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
2月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析
|
11天前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
68 1
|
2月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
115 1
|
2月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
2月前
|
JSON 数据挖掘 API
闲鱼商品列表API响应数据python解析
闲鱼商品列表API(Goodfish.item_list)提供标准化数据接口,支持GET请求,返回商品标题、价格、图片、卖家信息等。适用于电商比价、数据分析,支持多语言调用,附Python示例代码,便于开发者快速集成。
|
2月前
|
JSON 自然语言处理 API
闲鱼商品详情API响应数据python解析
闲鱼商品详情API(goodfish.item_get)通过商品ID获取标题、价格、描述、图片等信息,支持Python等多语言调用。本文提供Python请求示例,包含请求构造与数据处理方法。
|
2月前
|
JSON API 数据格式
微店商品列表API响应数据python解析
微店商品列表API为开发者提供稳定高效获取商品信息的途径,支持HTTP GET/POST请求,返回JSON格式数据,含商品ID、名称、价格、库存等字段,适用于电商数据分析与展示平台搭建等场景。本文提供Python调用示例,助您快速上手。
|
2月前
|
API 数据安全/隐私保护 Python
Python如何快速接入聚合数据行情API
聚合数据行情API,指的是一个接口即可提供多个不同交易品种的行情数据查询,这种接口,可以让你同时查询A股、美股、外汇等多种资产的行情数据。

推荐镜像

更多