ONNX 与量化:提高模型效率

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【8月更文第27天】随着人工智能技术的广泛应用,模型部署变得越来越重要。为了在资源受限的设备上运行复杂的机器学习模型,模型量化技术成为了一种有效的手段。Open Neural Network Exchange (ONNX) 作为一种开放格式,支持在不同框架之间交换训练好的模型,同时也支持模型量化。本文将探讨如何结合 ONNX 和模型量化技术来提高模型的效率,减少模型大小并加快推理速度。

概述

随着人工智能技术的广泛应用,模型部署变得越来越重要。为了在资源受限的设备上运行复杂的机器学习模型,模型量化技术成为了一种有效的手段。Open Neural Network Exchange (ONNX) 作为一种开放格式,支持在不同框架之间交换训练好的模型,同时也支持模型量化。本文将探讨如何结合 ONNX 和模型量化技术来提高模型的效率,减少模型大小并加快推理速度。

什么是模型量化

模型量化是一种模型压缩技术,它将模型中的浮点数权重转换为较低位数的整数表示,以减少模型的大小和计算复杂度。量化通常分为两种类型:后训练量化(Post-Training Quantization, PTQ)和量化感知训练(Quantization-Aware Training, QAT)。后训练量化是在模型训练完成后进行的,而量化感知训练则是在模型训练的过程中同时进行量化。

ONNX 在模型量化中的角色

ONNX 不仅支持多种机器学习框架之间的模型交换,还提供了一系列工具来帮助开发者进行模型优化,其中包括模型量化。ONNX 的量化工具可以将模型转换为量化版本,使其更适合在边缘设备上部署。

ONNX 量化工具

ONNX 提供了两种主要的量化工具:onnxruntime.quantizationonnxruntime.transformers。前者适用于一般的模型量化,后者则专门针对 Transformer 模型。

量化流程

下面是使用 ONNX 量化工具对模型进行量化的一般流程:

  1. 模型训练:在 PyTorch 或 TensorFlow 中训练模型。
  2. 模型导出:将模型转换为 ONNX 格式。
  3. 模型量化:使用 ONNX 量化工具对 ONNX 模型进行量化。
  4. 验证精度:在量化后的模型上验证模型精度。
  5. 部署模型:将量化后的模型部署到目标设备。

示例:使用 ONNX 进行模型量化

1. 模型训练与导出

首先,我们使用 PyTorch 训练一个简单的卷积神经网络模型,并将其导出为 ONNX 格式。

import torch
import torchvision.models as models

# 加载预训练的 ResNet-18 模型
model = models.resnet18(pretrained=True)
model.eval()

# 导出模型为 ONNX 格式
dummy_input = torch.randn(1, 3, 224, 224)
torch.onnx.export(model, dummy_input, "resnet18.onnx", verbose=True)
2. 模型量化

接下来,我们将使用 ONNX 的量化工具对模型进行量化。

import onnx
from onnxruntime.quantization import quantize_dynamic, QuantType

# 加载 ONNX 模型
onnx_model = onnx.load("resnet18.onnx")

# 对模型进行量化
quantized_model = quantize_dynamic(onnx_model, "resnet18_quantized.onnx", weight_type=QuantType.QInt8)
3. 验证模型精度

在量化之后,我们需要验证量化模型的精度是否可以接受。

import onnxruntime as ort

# 加载未量化的模型
ort_session = ort.InferenceSession("resnet18.onnx")

# 加载量化的模型
quantized_ort_session = ort.InferenceSession("resnet18_quantized.onnx")

# 准备输入数据
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name

# 创建输入数据
input_data = torch.randn(1, 3, 224, 224).numpy()

# 运行未量化的模型
outputs = ort_session.run([output_name], {
   input_name: input_data})

# 运行量化的模型
quantized_outputs = quantized_ort_session.run([output_name], {
   input_name: input_data})

# 比较两个模型的输出
import numpy as np

print("Original Output:", outputs)
print("Quantized Output:", quantized_outputs)
print("Difference:", np.mean(np.abs(outputs[0] - quantized_outputs[0])))

面临的挑战及解决方案

  1. 精度损失:量化会导致模型精度有所下降。可以通过后处理技巧如校准(Calibration)来减小精度损失。
  2. 量化模式选择:选择合适的量化模式(如 PTQ 或 QAT)以平衡精度和效率。
  3. 量化参数:合理设置量化参数以获得最佳效果。

总结

结合 ONNX 和模型量化技术可以显著提高模型的部署效率,特别是在资源受限的设备上。通过 ONNX 的量化工具,开发者可以轻松地将模型转换为量化版本,从而减少模型大小并加快推理速度。虽然模型量化带来了许多优势,但也需要仔细考虑量化带来的精度损失问题,并采取适当的策略来最小化这种影响。随着技术的不断进步,模型量化将成为机器学习部署中的一个不可或缺的部分。

目录
相关文章
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
ONNX 优化技巧:加速模型推理
【8月更文第27天】ONNX (Open Neural Network Exchange) 是一个开放格式,用于表示机器学习模型,使模型能够在多种框架之间进行转换。ONNX Runtime (ORT) 是一个高效的推理引擎,旨在加速模型的部署。本文将介绍如何使用 ONNX Runtime 和相关工具来优化模型的推理速度和资源消耗。
816 4
|
2月前
|
机器学习/深度学习 缓存 TensorFlow
TensorFlow 数据管道优化超重要!掌握这些关键技巧,大幅提升模型训练效率!
【8月更文挑战第31天】在机器学习领域,高效的数据处理对构建优秀模型至关重要。TensorFlow作为深度学习框架,其数据管道优化能显著提升模型训练效率。数据管道如同模型生命线,负责将原始数据转化为可理解形式。低效的数据管道会限制模型性能,即便模型架构先进。优化方法包括:合理利用数据加载与预处理功能,使用`tf.data.Dataset` API并行读取文件;使用`tf.image`进行图像数据增强;缓存数据避免重复读取,使用`cache`和`prefetch`方法提高效率。通过这些方法,可以大幅提升数据管道效率,加快模型训练速度。
40 0
|
4月前
|
存储 人工智能 缓存
大模型压缩量化方案怎么选?无问芯穹Qllm-Eval量化方案全面评估:多模型、多参数、多维度
【6月更文挑战第26天】无问芯穹Qllm-Eval评估了11个大模型(如OPT、LLaMA2)在多种参数配置和任务下的量化效果,探索权重量化、激活量化等方法对性能、速度和内存的影响。研究发现,W4、W4A8量化通常保持在2%的性能损失范围内,但最佳策略取决于模型大小、任务类型及硬件,提示了选择压缩方案时需灵活适应。[[arxiv.org/pdf/2402.18158.pdf](https://arxiv.org/pdf/2402.18158.pdf)]
75 6
|
5月前
|
自然语言处理
论文推荐:用多词元预测法提高模型效率与速度
《Better & Faster Large Language Models via Multi-token Prediction》论文提出了一种多词元预测框架,改善了大型语言模型(LLMs)的样本效率和推理速度。该方法通过一次预测多个词元,而非单个词元,提高了模型在编程和自然语言任务中的性能。实验显示,多词元预测在HumanEval和MBPP任务上性能提升,推理速度最高可提升3倍。此外,自我推测解码技术进一步优化了解码效率。尽管在小模型中效果不明显,但该方法为大模型训练和未来研究开辟了新途径。
40 0
|
5月前
|
机器学习/深度学习 算法
如何评估使用PyBrain训练的模型性能
使用PyBrain训练模型的性能评估包括:混淆矩阵(TP, TN, FP, FN, 准确率)、性能度量(准确率, 错误率)、泛化能力、数据集划分(训练集与测试集误差)以及其他指标如计算速度和鲁棒性。评估过程需综合考虑多种方法,并依据业务需求和模型类型选择合适的方式。
36 3
|
5月前
|
机器学习/深度学习 人工智能 监控
2、【KV260开发】yolov4模型训练、量化、编译、部署
2、【KV260开发】yolov4模型训练、量化、编译、部署
91 0
|
5月前
|
机器学习/深度学习 算法
如何评估使用PyBrain训练的模型性能?
PyBrain模型性能评估包括混淆矩阵(TP, TN, FP, FN)、准确率与错误率、泛化能力、数据集划分与测试以及计算速度和鲁棒性等指标。评估过程需结合业务需求和模型类型选取合适方法。
32 1
|
10月前
|
存储 JSON 自然语言处理
使用ExLlamaV2量化并运行EXL2模型
量化大型语言模型(llm)是减少这些模型大小和加快推理速度的最流行的方法。在这些技术中,GPTQ在gpu上提供了惊人的性能。与非量化模型相比,该方法使用的VRAM几乎减少了3倍,同时提供了相似的精度水平和更快的生成速度。
178 0
|
机器学习/深度学习 数据可视化
DHVT:在小数据集上降低VIT与卷积神经网络之间差距,解决从零开始训练的问题
VIT在归纳偏置方面存在空间相关性和信道表示的多样性两大缺陷。所以论文提出了动态混合视觉变压器(DHVT)来增强这两种感应偏差。
253 0
|
机器学习/深度学习 存储 人工智能
模型推理加速系列 | 03:Pytorch模型量化实践并以ResNet18模型量化为例(附代码)
本文主要简要介绍Pytorch模型量化相关,并以ResNet18模型为例进行量化实践。