Java内存模型(JMM)

简介: Java内存模型(JMM)是一个抽象概念,用于规范程序中各种变量(实例字段、静态字段及数组元素)的访问方式,确保不同Java虚拟机(JVM)上的并发程序结果一致可靠。JMM定义了主存储器(所有线程共享)与工作存储器(线程私有)的概念,线程间通过主存储器进行通信。JMM具备三大特性:原子性(确保基本读写操作的不可分割)、可见性(确保一个线程对共享变量的修改对其他线程可见)、有序性(防止指令被处理器或编译器重排序影响程序逻辑)。通过这些特性,JMM解决了多线程环境下的数据一致性问题。

什么是Java内存模型

JMM本身只是一个抽象的概念,并不真实存在,它描述的是一种规则或规范;通过这组规范,定义了程序中对各种变量(包括实例字段,静态字段和构成数组对象的元素)的访问方式。需要每个JVM的实现都要遵守这样的规范;有了JMM规范的保障后,并发程序运行在不同虚拟机上时,得到的程序结果才是安全可靠可信赖的,如果没有JMM内存模型来规范,那经过不同JVM翻译之后,就可能出现,运行结果不相同或不正确。

简单说JMM就是屏蔽了各种硬件和操作系统的访问差异,保证Java程序在各种平台下对内存的访问都能保证效果一致的机制规范。

JMM还抽象出主存储器(Main Memory)和工作存储器(Working Memory)两种:

主存储器是实例对象所在的区域,所有实例都存在于主存储器内,主存储器是所有线程共享的

工作存储器是线程所拥有的作业区,每个线程都有其专用的工作存储器;工作存储器存有主存储器中必要部分的拷贝,称为工作拷贝(Working Copy)

所以线程无法直接对主内存进行操作,线程A想要和线程B通信,只能通过主存进行。

三大特性

JMM有三大特性:原子性、可见性、有序性

原子性

JMM保证了对共享变量的读取和写入可以被视为原子操作

为支持JMM,Java定义了8种原子操作,用来控制主存和工作内存之间的交互

  • read读取:作用于主内存,将共享变量从主内存传送到线程的工作内存中
  • load载入:作用于工作内存,把read读取的值放到工作内存中的副本变量中
  • store存储:作用于工作内存,把工作内存中的变量传送到主内存中
  • write写入:作用于主内存,把从工作内存中store传送过来的值写到主内存变量中
  • use使用:作用于工作内存,把工作内存的值传递给执行引擎,当虚拟机遇到需要使用这个变量的指令时,就会执行这个动作
  • assign赋值:作用于工作内存,把执行引擎获取到的值赋值给工作线程中的变量,当虚拟机遇到给变量赋值的指令时,就执行此操作
  • lock锁定:作用于主内存,把变量标记为现场独占状态
  • unlock解锁:作用于主内存,它将释放独占状态

可见性

多个线程访问共享变量时,一个线程如果修改变量值,在刷新到主内存之前,其他线程不一定能立即看到这个修改。

在JVM中,栈负责运行(主要是方法),堆中负责存储(比如new的对象),JVM运行程序的实体是线程,每个线程创建时,JVM都会为其创建一个工作内存,工作内存是每个现场私有数据区域;而Java内存模型中规定,所有变量都存储在主内存中,主内存是共享内存区域,所有线程都可以访问;但线程对变量的操作(读写)必须在自己工作内存中进行,首先要将变量从主内存拷贝到自己的工作内存空间,然后对变量操作,操作完成后,再将变量回写到主内存;由于不能直接操作主内存的变量,各个线程工作内存中存储着主内存变量副本,因此不同线程无法直接访问对方工作内存,线程间通信必须通过主内存完成。

同步的规定

  • 线程解锁前,必须把共享变量的值刷新回主内存
  • 线程加锁前,必须将主内存的最新值读取到自己的工作内存
  • 加锁解锁是同一把锁

可见性问题(缓存一致性问题):指在未加同步锁的多线程环境下,同时修改共享变量,导致结果与预期不符的问题。

代码复现

java

代码解读

复制代码

public class Demo {
    private static int num;
    public static void main(String[] args) throws InterruptedException {
        Thread[] threads = new Thread[100];
        CountDownLatch latch = new CountDownLatch(threads.length);
        for (int i = 0; i < threads.length; i++) {
            threads[i] = new Thread(() -> {
                for (int j = 0; j < 10000; j++) {
                    num++;
                }
                latch.countDown();
            });
        }
        Arrays.stream(threads).forEach(Thread::start);
        latch.await();
        System.out.println("预期值:" + threads.length * 10000 + ",实际值:" + num);
        // 预期值:1000000,实际值:189067
    }
}

同步锁

java

代码解读

复制代码

public class Demo {
    private static int num;
    public static void main(String[] args) throws InterruptedException {
        Thread[] threads = new Thread[100];
        CountDownLatch latch = new CountDownLatch(threads.length);
        ReentrantLock lock = new ReentrantLock();
        for (int i = 0; i < threads.length; i++) {
            threads[i] = new Thread(() -> {
                for (int j = 0; j < 10000; j++) {
                    lock.lock();
                    num++;
                    lock.unlock();
                }
                latch.countDown();
            });
        }
        Arrays.stream(threads).forEach(Thread::start);
        latch.await();
        System.out.println("预期值:" + threads.length * 10000 + ",实际值:" + num);
        // 预期值:1000000,实际值:1000000
    }
}

有序性

在本(单)线程内执行顺序按照代码的先后顺序来执行,所有的操作都是有序的,线程内似表现为串行;但在多线程内,所有的操作都是无序的。

重排序:处理器为提高程序运行效率,提高并行效率,可能会对代码进行优化,编译器认为重排序后程序的执行效率更优,这样一来代码执行顺序就未必是编写代码时候的顺序,在多线程情况下就可能会出错;但它也需要满足以下两个条件

  • 在的单线程环境下不能改变程序运行的结果
  • 存在数据依赖关系的不允许重排序

数据依赖性:如果两个操作访问同一个变量,且这两个操作中有一个为写,此时这两个操作存在数据依赖性;分为以下列三种类型,下面三种情况,只要重排两个操作执行顺序,程序的执行结果就会发生改变;所以编译器和处理器不会改变单线程或单处理器环境下存在数据依赖性操作的执行顺序;在多处理器或多线程之间的数据依赖性不被编译器和处理器考虑。

名称 代码示例 说明
写后读 a = 1;b = a; 写一个变量之后,再读这个变量
写后写 a = 1;a = 2; 写一个变量之后,再写这个变量
读后写 a = b;b = 1; 读一个变量之后,再写这个变量

有序性问题(指令重排序) :指在多线程环境下,由于执行语句重排序后,重排序代码块没有执行完,就切换到其他线程,导致计算结果与预期不符的问题;这就是编译器的编译优化给并发编程带来的有序性问题。

代码复现

java

代码解读

复制代码

public class Demo {
    private static int a, b, x, y;
    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 1_0000_0000; i++) {
            a = 0;
            b = 0;
            x = 0;
            y = 0;
            CountDownLatch latch = new CountDownLatch(2);
            Thread t1 = new Thread(() -> {
                a = 1;
                x = b;
                latch.countDown();
            });
            Thread t2 = new Thread(() -> {
                b = 1;
                y = a;
                latch.countDown();
            });
            t1.start();
            t2.start();
            latch.await();
            if (x == 0 && y == 0) {
                System.err.println("第" + i + "次出现(x=0,y=0)");
                break;
            }
            // 第144654次出现(x=0,y=0)
        }
    }
}

禁止指令重排

java

代码解读

复制代码

public class Demo {
    private static volatile int a, b, x, y;
    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 1_0000_0000; i++) {
            a = 0;
            b = 0;
            x = 0;
            y = 0;
            CountDownLatch latch = new CountDownLatch(2);
            Thread t1 = new Thread(() -> {
                a = 1;
                x = b;
                latch.countDown();
            });
            Thread t2 = new Thread(() -> {
                b = 1;
                y = a;
                latch.countDown();
            });
            t1.start();
            t2.start();
            latch.await();
            if (x == 0 && y == 0) {
                System.err.println("第" + i + "次出现(x=0,y=0)");
                break;
            }
        }
    }
}


转载来源:https://juejin.cn/post/7392481848284463167

相关文章
|
2月前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
47 6
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
36 0
|
2月前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
44 8
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
64 5
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
2月前
|
算法 Java 开发者
Java内存管理与垃圾回收机制深度剖析####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,特别是其垃圾回收机制的工作原理、算法及实践优化策略。不同于传统的摘要概述,本文将以一个虚拟的“城市环卫系统”为比喻,生动形象地揭示Java内存管理的奥秘,旨在帮助开发者更好地理解并调优Java应用的性能。 ####
|
2月前
|
Java
java内存区域
1)栈内存:保存所有的对象名称 2)堆内存:保存每个对象的具体属性 3)全局数据区:保存static类型的属性 4)全局代码区:保存所有的方法定义
27 1