Signac R|如何合并多个 Seurat 对象 (1)

简介: Signac R|如何合并多个 Seurat 对象 (1)

引言

在本文中演示了如何合并包含单细胞染色质数据的多个 Seurat 对象。为了进行演示,将使用 10x Genomics 提供的四个 scATAC-seq PBMC 数据集:

  1. 500-cell PBMC

  2. 1k-cell PBMC

  3. 5k-cell PBMC

  4. 10k-cell PBMC

实战

在整合多个单细胞染色质数据集的过程中,应当意识到,如果对每个数据集单独进行了峰值检测,那么检测到的峰值可能并不完全一致。为此,需要构建一个适用于所有合并数据集的共通峰值集合。

可以通过GenomicRanges包提供的功能来实现这一点。该包中的reduce函数能够将所有相互重叠的峰值进行合并。此外,disjoin函数也是一个不错的选择,它能够生成互不重叠的独立峰值集合。以下是一个图解示例,用以展示reducedisjoin两种方法的差异:

gr <- GRanges(seqnames = "chr1", ranges = IRanges(start = c(20, 70, 300), end = c(120, 200, 400)))
gr

## GRanges object with 3 ranges and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]     chr1    20-120      *
##   [2]     chr1    70-200      *
##   [3]     chr1   300-400      *
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths

构建统一的峰值集合

如果在各个实验中分别鉴定了峰值,那么这些峰值可能并不完全一致。可以通过整合所有实验数据中的峰值,来形成一个统一的峰值集合,并在合并这些数据集之前,对每个实验中的峰值集合进行量化分析。

首先,需要导入每个实验的峰值位置信息,并将其转换成基因组范围内的格式。接着,利用 GenomicRanges 包中的 reduce 函数,来创建一个适用于所有数据集的峰值集合,以便在每个实验中进行量化分析。

library(Signac)
library(Seurat)
library(GenomicRanges)
library(future)

plan("multicore", workers = 4)
options(future.globals.maxSize = 50000 * 1024^2) # for 50 Gb RAM

# read in peak sets
peaks.500 <- read.table(
  file = "pbmc500/atac_pbmc_500_nextgem_peaks.bed",
  col.names = c("chr", "start", "end")
)
peaks.1k <- read.table(
  file = "pbmc1k/atac_pbmc_1k_nextgem_peaks.bed",
  col.names = c("chr", "start", "end")
)
peaks.5k <- read.table(
  file = "pbmc5k/atac_pbmc_5k_nextgem_peaks.bed",
  col.names = c("chr", "start", "end")
)
peaks.10k <- read.table(
  file = "pbmc10k/atac_pbmc_10k_nextgem_peaks.bed",
  col.names = c("chr", "start", "end")
)

# convert to genomic ranges
gr.500 <- makeGRangesFromDataFrame(peaks.500)
gr.1k <- makeGRangesFromDataFrame(peaks.1k)
gr.5k <- makeGRangesFromDataFrame(peaks.5k)
gr.10k <- makeGRangesFromDataFrame(peaks.10k)

# Create a unified set of peaks to quantify in each dataset
combined.peaks <- reduce(x = c(gr.500, gr.1k, gr.5k, gr.10k))

# Filter out bad peaks based on length
peakwidths <- width(combined.peaks)
combined.peaks <- combined.peaks[peakwidths  < 10000 & peakwidths > 20]
combined.peaks

## GRanges object with 89951 ranges and 0 metadata columns:
##           seqnames            ranges strand
##              <Rle>         <IRanges>  <Rle>
##       [1]     chr1     565153-565499      *
##       [2]     chr1     569185-569620      *
##       [3]     chr1     713551-714783      *
##       [4]     chr1     752418-753020      *
##       [5]     chr1     762249-763345      *
##       ...      ...               ...    ...
##   [89947]     chrY 23422151-23422632      *
##   [89948]     chrY 23583994-23584463      *
##   [89949]     chrY 23602466-23602779      *
##   [89950]     chrY 28816593-28817710      *
##   [89951]     chrY 58855911-58856251      *
##   -------
##   seqinfo: 24 sequences from an unspecified genome; no seqlengths

构建片段对象

为了对合并的峰值集合进行量化分析,需要针对每个实验创建一个片段对象。片段对象是一个在 Signac 中特别定义的类,它负责存储与单个片段文件相关的所有数据。

首先需要导入每个实验的细胞元数据,这样就能了解每个文件包含哪些细胞的条形码信息。之后,利用 CreateFragmentObject 函数来生成片段对象。这个函数会进行一系列验证,确保文件不仅存在于硬盘上,而且已经过压缩和索引处理,同时计算文件及其 tabix 索引的 MD5 校验值,以便于能够检测到文件在任何时间点的变更情况,并确认文件中确实包含了预期的细胞类型。

# load metadata
md.500 <- read.table(
  file = "pbmc500/atac_pbmc_500_nextgem_singlecell.csv",
  stringsAsFactors = FALSE,
  sep = ",",
  header = TRUE,
  row.names = 1
)[-1, ] # remove the first row

md.1k <- read.table(
  file = "pbmc1k/atac_pbmc_1k_nextgem_singlecell.csv",
  stringsAsFactors = FALSE,
  sep = ",",
  header = TRUE,
  row.names = 1
)[-1, ]

md.5k <- read.table(
  file = "pbmc5k/atac_pbmc_5k_nextgem_singlecell.csv",
  stringsAsFactors = FALSE,
  sep = ",",
  header = TRUE,
  row.names = 1
)[-1, ]

md.10k <- read.table(
  file = "pbmc10k/atac_pbmc_10k_nextgem_singlecell.csv",
  stringsAsFactors = FALSE,
  sep = ",",
  header = TRUE,
  row.names = 1
)[-1, ]

# perform an initial filtering of low count cells
md.500 <- md.500[md.500$passed_filters > 500, ]
md.1k <- md.1k[md.1k$passed_filters > 500, ]
md.5k <- md.5k[md.5k$passed_filters > 500, ]
md.10k <- md.10k[md.10k$passed_filters > 1000, ] # sequenced deeper so set higher cutoff

# create fragment objects
frags.500 <- CreateFragmentObject(
  path = "pbmc500/atac_pbmc_500_nextgem_fragments.tsv.gz",
  cells = rownames(md.500)
)


frags.1k <- CreateFragmentObject(
  path = "pbmc1k/atac_pbmc_1k_nextgem_fragments.tsv.gz",
  cells = rownames(md.1k)
)

frags.5k <- CreateFragmentObject(
  path = "pbmc5k/atac_pbmc_5k_nextgem_fragments.tsv.gz",
  cells = rownames(md.5k)
)

frags.10k <- CreateFragmentObject(
  path = "pbmc10k/atac_pbmc_10k_nextgem_fragments.tsv.gz",
  cells = rownames(md.10k)
)

在各数据集中对峰值进行量化

利用 FeatureMatrix 函数,现在能够为每个样本生成一个以峰值和细胞为维度的矩阵。此函数通过 future 包支持并行计算。

pbmc500.counts <- FeatureMatrix(
  fragments = frags.500,
  features = combined.peaks,
  cells = rownames(md.500)
)

pbmc1k.counts <- FeatureMatrix(
  fragments = frags.1k,
  features = combined.peaks,
  cells = rownames(md.1k)
)

pbmc5k.counts <- FeatureMatrix(
  fragments = frags.5k,
  features = combined.peaks,
  cells = rownames(md.5k)
)

pbmc10k.counts <- FeatureMatrix(
  fragments = frags.10k,
  features = combined.peaks,
  cells = rownames(md.10k)
)

总结

本文提供了一个详细的流程来合并单细胞染色质数据集,包括数据下载、预处理、合并以及后续的分析和可视化步骤。强调了在合并过程中创建共有峰值集合的重要性,并提供了在没有片段文件时的替代方法。

相关文章
|
2月前
|
数据可视化
Signac R|如何合并多个 Seurat 对象 (2)
Signac R|如何合并多个 Seurat 对象 (2)
83 11
Signac R|如何合并多个 Seurat 对象 (2)
|
3月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
6月前
|
存储 移动开发 Shell
单细胞分析(Signac): PBMC scATAC-seq 预处理
单细胞分析(Signac): PBMC scATAC-seq 预处理
82 2
|
6月前
|
数据采集 传感器 XML
Landsat Collection 2 数据集详细介绍(T1/T2产品差异)
Landsat Collection 2 数据集详细介绍(T1/T2产品差异)
365 0
Landsat Collection 2 数据集详细介绍(T1/T2产品差异)
|
6月前
|
传感器 XML 数据处理
Landsat Collection 2 T1一级数据详细介绍(数据处理过程和几何精度)
Landsat Collection 2 T1一级数据详细介绍(数据处理过程和几何精度)
83 0
|
6月前
|
定位技术 Python
R语言raster包遍历多个文件夹并批量计算每一个文件夹下全部遥感影像的平均值
R语言raster包遍历多个文件夹并批量计算每一个文件夹下全部遥感影像的平均值
|
存储 算法 Linux
算法丨根据基因型VCF文件自动识别变异位点并生成序列fasta文件,基于R语言tidyverse
算法丨根据基因型VCF文件自动识别变异位点并生成序列fasta文件,基于R语言tidyverse
|
算法 Linux 数据处理
SGAT丨GWAS得到的结果怎么处理?一种基于tidyverse的数据整理实用小算法
SGAT丨GWAS得到的结果怎么处理?一种基于tidyverse的数据整理实用小算法
|
算法 Linux Python
SGAT丨快捷GWAS结果显著SNP位点归类提取与变异类型转化算法,基于R语言tidyverse
SGAT丨快捷GWAS结果显著SNP位点归类提取与变异类型转化算法,基于R语言tidyverse
ENVI_IDL:批量对Modis Swath产品进行均值运算+解析
ENVI_IDL:批量对Modis Swath产品进行均值运算+解析
174 0
ENVI_IDL:批量对Modis Swath产品进行均值运算+解析