微服务从代码到k8s部署应有尽有系列(十三、服务监控)

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 微服务从代码到k8s部署应有尽有系列(十三、服务监控)

我们用一个系列来讲解从需求到上线、从代码到k8s部署、从日志到监控等各个方面的微服务完整实践。

整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中间件,所用到的技术栈基本是go-zero项目组的自研组件,基本是go-zero全家桶了。

实战项目地址:https://github.com/Mikaelemmmm/go-zero-looklook

概述

好的服务一定是可以被及时监控的,在go-zero-looklook中我们使用目前比较流行的prometheus来作为监控工具,然后使用grafana来显示

go-zero已经在代码中给我们集成好了prometheus

// StartAgent starts a prometheus agent.
func StartAgent(c Config) {
  if len(c.Host) == 0 {
    return
  }
  once.Do(func() {
    enabled.Set(true)
    threading.GoSafe(func() {
      http.Handle(c.Path, promhttp.Handler())
      addr := fmt.Sprintf("%s:%d", c.Host, c.Port)
      logx.Infof("Starting prometheus agent at %s", addr)
      if err := http.ListenAndServe(addr, nil); err != nil {
        logx.Error(err)
      }
    })
  })
}

无论当我们启动api、rpc都会额外启动一个goroutine 提供prometheus的服务

【注】如果像我们之前order-mq这种使用serviceGroup管理的服务,在启动文件main中要显式调用一下才可以,api、rpc不需要,配置都一样

package main
.....
func main() {
  ....
  // log、prometheus、trace、metricsUrl.
  if err := c.SetUp(); err != nil {
    panic(err)
  }
  ......
}

实现

1. 配置prometheus与grafana

在项目下的docker-compose-env.yml文件中

我们来deploy/prometheus/server/prometheus.yml看看prometheus配置文件

global:
  scrape_interval:
  external_labels:
    monitor: 'codelab-monitor'
# 这里表示抓取对象的配置
scrape_configs:
  - job_name: 'prometheus'
    scrape_interval: 5s  #重写了全局抓取间隔时间,由15秒重写成5秒
    static_configs:
      - targets: ['127.0.0.1:9090']
  - job_name: 'order-api'
    static_configs:
      - targets: ['order-api:9091']
        labels:
          job: order-api
          app: order-api
          env: dev
  - job_name: 'order-rpc'
    static_configs:
      - targets: ['order-rpc:9091']
        labels:
          job: order-rpc
          app: order-rpc
          env: dev
  - job_name: 'order-mq'
    static_configs:
      - targets: ['order-mq:9091']
        labels:
          job: order-mq
          app: order-mq
          env: dev
  - job_name: 'usercenter-api'
    static_configs:
      - targets: ['usercenter-api:9091']
        labels:
          job: usercenter-api
          app: usercenter-api
          env: dev
  - job_name: 'usercenter-rpc'
    static_configs:
      - targets: ['usercenter-rpc:9091']
        labels:
          job: usercenter-rpc
          app: usercenter-rpc
          env: dev
  - job_name: 'travel-api'
    static_configs:
      - targets: ['travel-api:9091']
        labels:
          job: travel-api
          app: travel-api
          env: dev
  - job_name: 'travel-rpc'
    static_configs:
      - targets: ['travel-rpc:9091']
        labels:
          job: travel-rpc
          app: travel-rpc
          env: dev
  - job_name: 'payment-api'
    static_configs:
      - targets: ['payment-api:9091']
        labels:
          job: payment-api
          app: payment-api
          env: dev
  - job_name: 'payment-rpc'
    static_configs:
      - targets: ['payment-rpc:9091']
        labels:
          job: payment-rpc
          app: payment-rpc
          env: dev
  - job_name: 'mqueue-rpc'
    static_configs:
      - targets: ['mqueue-rpc:9091']
        labels:
          job: mqueue-rpc
          app: mqueue-rpc
          env: dev
  - job_name: 'message-mq'
    static_configs:
      - targets: ['message-mq:9091']
        labels:
          job: message-mq
          app: message-mq
          env: dev
  - job_name: 'identity-api'
    static_configs:
      - targets: ['identity-api:9091']
        labels:
          job: identity-api
          app: identity-api
          env: dev
  - job_name: 'identity-rpc'
    static_configs:
      - targets: [ 'identity-rpc:9091' ]
        labels:
          job: identity-rpc
          app: identity-rpc
          env: dev

2. 业务配置

实现上我们业务也不需要添加任何代码(除了serviceGroup管理的服务)

我们只需要在业务配置文件中配置即可,我们拿usercenter来举例

1)api

2)rpc

3)mq(serviceGroup)

【注】(再强调一次)如果像我们之前order-mq这种使用serviceGroup管理的服务,在启动文件main中要显示调用一下才可以,api、rpc不需要

package main
.....
func main() {
  ....
  // log、prometheus、trace、metricsUrl.
  if err := c.SetUp(); err != nil {
    panic(err)
  }
  ......
}

3. 查看

访问 http://127.0.0.1:9090/ , 点击上面菜单“Status”,再点击Targets ,蓝色的就是启动成了,红色就是没启动成功

4. 配置grafana

访问http://127.0.0.1:3001, 默认账号、密码都是admin

配置数据源是prometheus

然后配置

【注】这里是在docker中配置的,所以http的url不能写127.0.0.1

查看是否配置成功

配置dashboard

然后点击第一个

我们添加一个cpu指标,在下方输入cpu选择

然后我们就可以看到我们想要看的监控指标

结尾

这里只演示了一个指标,其他想看的指标自己配置就可以了,同时你也可以在grafana添加alert报警配置,这个就不作为演示了自行整理

项目地址

https://github.com/zeromicro/go-zero

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2月前
|
Kubernetes Java 调度
无需接入执行器,0 代码改造实现微服务任务调度
本文提出了一种基于云原生的任务调度新方案,不需要依赖SDK,不依赖语言,实现定时调度和分布式跑批。
220 23
|
2月前
|
Kubernetes 调度 微服务
无需接入执行器,0代码改造实现微服务任务调度
本文提出了一种基于云原生的任务调度新方案,不需要依赖SDK,不依赖语言,实现定时调度和分布式跑批
178 1
|
3月前
|
jenkins Java 持续交付
使用 Jenkins 和 Spring Cloud 自动化微服务部署
随着单体应用逐渐被微服务架构取代,企业对快速发布、可扩展性和高可用性的需求日益增长。Jenkins 作为领先的持续集成与部署工具,结合 Spring Cloud 提供的云原生解决方案,能够有效简化微服务的开发、测试与部署流程。本文介绍了如何通过 Jenkins 实现微服务的自动化构建与部署,并结合 Spring Cloud 的配置管理、服务发现等功能,打造高效、稳定的微服务交付流程。
467 0
使用 Jenkins 和 Spring Cloud 自动化微服务部署
|
9月前
|
存储 Kubernetes 开发工具
使用ArgoCD管理Kubernetes部署指南
ArgoCD 是一款基于 Kubernetes 的声明式 GitOps 持续交付工具,通过自动同步 Git 存储库中的配置与 Kubernetes 集群状态,确保一致性与可靠性。它支持实时同步、声明式设置、自动修复和丰富的用户界面,极大简化了复杂应用的部署管理。结合 Helm Charts,ArgoCD 提供模块化、可重用的部署流程,显著减少人工开销和配置错误。对于云原生企业,ArgoCD 能优化部署策略,提升效率与安全性,是实现自动化与一致性的理想选择。
577 0
|
5月前
|
存储 监控 Shell
SkyWalking微服务监控部署与优化全攻略
综上所述,虽然SkyWalking的初始部署流程相对复杂,但通过一步步的准备和配置,可以充分发挥其作为可观测平台的强大功能,实现对微服务架构的高效监控和治理。尽管未亲临,心已向往。将一件事做到极致,便是天分的展现。
|
8月前
|
存储 Kubernetes 异构计算
Qwen3 大模型在阿里云容器服务上的极简部署教程
通义千问 Qwen3 是 Qwen 系列最新推出的首个混合推理模型,其在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。
|
7月前
|
人工智能 搜索推荐 前端开发
从代码到心灵对话:我的CodeBuddy升级体验之旅(个性化推荐微服务系统)
本文分享了使用CodeBuddy最新版本的深度体验,重点探讨了Craft智能体、MCP协议和DeepSeek V3三大功能。Craft实现从对话到代码的无缝转化,大幅提升开发效率;MCP协议打通全流程开发,促进团队协作;DeepSeek V3则将代码补全提升至新境界,显著减少Bug并优化跨语言开发。这些功能共同塑造了AI与程序员共生的未来模式,让编程更高效、自然。
724 15
|
9月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
871 33
|
9月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
507 19
|
9月前
|
存储 测试技术 对象存储
使用容器服务ACK快速部署QwQ-32B模型并实现推理智能路由
阿里云最新发布的QwQ-32B模型,通过强化学习大幅度提升了模型推理能力。QwQ-32B模型拥有320亿参数,其性能可以与DeepSeek-R1 671B媲美。

热门文章

最新文章

推荐镜像

更多