自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决

简介: 自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决

问题一:相比业界传统方法,使用EPL训练万亿M6模型有哪些优势?


相比业界传统方法,使用EPL训练万亿M6模型有哪些优势?


参考回答:

相比业界传统方法,使用EPL训练万亿M6模型的优势在于显著降低了算力资源需求(节省超80%),并且训练效率提升近11倍。具体来说,在480张V100 32G GPU上,EPL框架在3天内就成功完成了万亿M6模型的预训练。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675005



问题二:为什么Bert Large模型在Nvidia V100 16G显卡上的batch size通常较小?


为什么Bert Large模型在Nvidia V100 16G显卡上的batch size通常较小?


参考回答:

Bert Large模型在Nvidia V100 16G显卡上的batch size通常较小(如2-8),主要是因为该模型对显存消耗较大。batch size的具体值还会受到Embedding大小、Sequence Length等因素的影响。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675006



问题三:流水并行如何帮助加速Bert Large模型的训练?


流水并行如何帮助加速Bert Large模型的训练?


参考回答:

流水并行通过将Bert Large模型中的Encoder Layer分层放置在不同的卡上进行训练,可以显著提高训练速度。例如,将Encoder Layer 1~8层、9~16层、17~24层分别放在不同的卡上,可以并行化计算过程,减少空闲等待时间,从而提高训练效率。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675008



问题四:使用流水并行训练Bert Large模型时,如何解决batch size小导致的收敛问题?


使用流水并行训练Bert Large模型时,如何解决batch size小导致的收敛问题?


参考回答:

虽然流水并行可以加速Bert Large模型的训练,但batch size小仍然可能导致收敛波动大和效果差的问题。为了解决这个问题,可以考虑在保持流水并行的基础上,通过增加总GPU数量或采用其他优化技术(如混合精度、编译优化等)来进一步提高训练效率和稳定性。此外,也可以考虑调整训练超参数或使用更先进的优化算法来改善收敛效果。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675009



问题五:在流水并行中,如何通过增加batch size来提升收敛加速?


在流水并行中,如何通过增加batch size来提升收敛加速?


参考回答:

在流水并行中,由于每张卡训练时的显存开销减少,因此可以增大batch size。增大的batch size有助于提升模型的收敛速度,从而加速训练过程。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675013

相关文章
|
3月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
943 66
|
6天前
|
存储 监控 TensorFlow
DeepRec Extension 打造稳定高效的分布式训练
DeepRec Extension 打造稳定高效的分布式训练
|
6天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
8天前
|
机器学习/深度学习 存储
DeepSeek进阶开发与应用4:DeepSeek中的分布式训练技术
随着深度学习模型和数据集规模的扩大,单机训练已无法满足需求,分布式训练技术应运而生。DeepSeek框架支持数据并行和模型并行两种模式,通过将计算任务分配到多个节点上并行执行,显著提高训练效率。本文介绍DeepSeek中的分布式训练技术,包括配置与启动方法,帮助用户轻松实现大规模模型训练。数据并行通过`MirroredStrategy`同步梯度,适用于大多数模型;模型并行则通过`ParameterServerStrategy`异步处理大模型。DeepSeek简化了分布式环境配置,支持单机多卡和多机多卡等场景。
|
2月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
107 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
2月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
103 7
|
3月前
|
人工智能 弹性计算 监控
分布式大模型训练的性能建模与调优
阿里云智能集团弹性计算高级技术专家林立翔分享了分布式大模型训练的性能建模与调优。内容涵盖四大方面:1) 大模型对AI基础设施的性能挑战,强调规模增大带来的显存和算力需求;2) 大模型训练的性能分析和建模,介绍TOP-DOWN和bottom-up方法论及工具;3) 基于建模分析的性能优化,通过案例展示显存预估和流水线失衡优化;4) 宣传阿里云AI基础设施,提供高效算力集群、网络及软件支持,助力大模型训练与推理。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
昇腾AI行业案例(四):基于 Bert 模型实现文本分类
欢迎学习《昇腾行业应用案例》的“基于 Bert 模型实现文本分类”实验。在本实验中,您将学习如何使用利用 NLP (natural language processing) 领域的AI模型来构建一个端到端的文本系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
59 0
|
3月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
130 2
|
16天前
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
454 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁