自研分布式训练框架EPL问题之实现显存的极致优化如何解决

简介: 自研分布式训练框架EPL问题之实现显存的极致优化如何解决

问题一:EPL框架在阿里巴巴内部支持哪些业务场景,并举例说明?


EPL框架在阿里巴巴内部支持哪些业务场景,并举例说明?


参考回答:

EPL框架在阿里巴巴内部支持图像、推荐、语音、视频、自然语言、多模态等多种业务场景。例如,EPL成功支持了10万亿规模的M6模型训练和Bert模型的训练,展现了其在大规模模型训练方面的能力。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/674998



问题二:在T5模型上,EPL通过哪些显存优化技术的组合使用,实现了显存的极致优化?


在T5模型上,EPL通过哪些显存优化技术的组合使用,实现了显存的极致优化?


参考回答:

在T5模型上,EPL通过开启GC(Gradient Checkpoint)、ZeRO和显存优化的AMP技术的组合使用,实现了显存的极致优化。在性能保持不变的情况下,显存降低了2.6倍。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675000



问题三:训练万亿/10万亿参数的M6模型时,EPL框架如何实现算力需求的降低?


训练万亿/10万亿参数的M6模型时,EPL框架如何实现算力需求的降低?


参考回答:

为了降低训练万亿/10万亿参数M6模型的算力需求,EPL框架中实现了MoE(Mixture-of-Experts)结构。MoE通过稀疏激活的特点,使用Gating(Router)为输入选择Top-k的expert进行计算,从而大大减少算力需求。此外,EPL还支持专家并行(EP),将experts拆分到多个devices上,进一步降低单个device的显存和算力需求。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675001



问题四:在训练M6模型时,EPL采用了哪些并行策略?


在训练M6模型时,EPL采用了哪些并行策略?


参考回答:

在训练M6模型时,EPL采用了数据并行+专家并行的混合并行策略。具体来说,MoE layer采用专家并行来降低算力需求,而其他layer则采用数据并行来提升训练的并发度。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675003



问题五:如何在EPL中为M6模型配置混合并行策略?


如何在EPL中为M6模型配置混合并行策略?


参考回答:

在EPL中为M6模型配置混合并行策略非常简单,只需要在模型代码中增加几行annotation(注释)来配置并行策略即可,无需对模型本身做任何修改。例如,可以通过特定的annotation来指定哪些层使用数据并行,哪些层使用专家并行。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675004

目录
打赏
0
0
0
0
17
分享
相关文章
ICLR 2025 | EDiT:一种基于 Local SGD 策略的大模型高效分布式训练方法
蚂蚁 AI Infra 团队在深度学习最核心之一的训练框架方向上持续投入与创新,实现了提升资源利用率、加速训练、提升训练稳定性等目标。我们提出的 EDiT 方法,即为其中一项工作。
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
424 0
分布式爬虫框架Scrapy-Redis实战指南
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
分布式新闻数据采集系统的同步效率优化实战
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
474 7
Java 大视界 -- 基于 Java 的大数据分布式存储在视频监控数据管理中的应用优化(170)
本文围绕基于 Java 的大数据分布式存储在视频监控数据管理中的应用展开,分析管理现状与挑战,阐述技术应用,结合案例和代码给出实操方案。
SpringBoot中@Scheduled和Quartz的区别是什么?分布式定时任务框架选型实战
本文对比分析了SpringBoot中的`@Scheduled`与Quartz定时任务框架。`@Scheduled`轻量易用,适合单机简单场景,但存在多实例重复执行、无持久化等缺陷;Quartz功能强大,支持分布式调度、任务持久化、动态调整和失败重试,适用于复杂企业级需求。文章通过特性对比、代码示例及常见问题解答,帮助开发者理解两者差异,合理选择方案。记住口诀:单机简单用注解,多节点上Quartz;若是任务要可靠,持久化配置不能少。
272 4
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
304 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
DeepRec Extension 打造稳定高效的分布式训练
DeepRec Extension 打造稳定高效的分布式训练
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问