Java日志通关(五) - 最佳实践

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 作者日常在与其他同学合作时,经常发现不合理的日志配置以及五花八门的日志记录方式,后续作者打算在团队内做一次Java日志的分享,本文是整理出的系列文章第五篇。

一、总是使用接口层

无论是写代码还是实现一个三方工具,请只使用接口层记录日志。


如果需要向外提供三方工具,记得在依赖中将日志的实现层及适配层标记为 optional,比如:

<dependency>
  <groupId>ch.qos.logback</groupId>
  <artifactId>logback-core</artifactId>
  <version>${logback.version}</version>
  <scope>runtime</scope>
  <optional>true</optional>
</dependency>

简单解释一下:

  • <scope>runtime</scope>:runtime 的包编译时会被忽略(认为运行环境已经有对应包了);
  • <optional>true</optional>:依赖不会传递,Maven 不会自动安装此包;


二、不要打印分隔线

不要打印类似这种只包含分隔线的内容:log.info("========== start =========="),因为在茫茫的日志中,这句日志的下一条很可能来自其他异步任务,如果使用 SLS 收集甚至来自另一台机器,这条分隔线根本起不到任何作用。


正确的方式是通过关键字进行标记,比如:log.info("FooBarProcessor start, request={}", request),之后就可以通过关键字 FooBarProcessor 快速过滤,这对于 grep 和 SLS 都适用。


另外,可以用 Marker 让日志语义更清晰(可以参考第三篇中【四、Marker】节),只是麻烦了点儿,看个人喜好。


三、避免因写日志而抛错

比如没有判空就直接调用了它的方法:


Object result = rpcResource.call();

// 如果 result 为 null 会抛 NPE
log.info("result.userId={}", result.getUserId());

这个问题老生常谈,这里不展开说了。


四、两个 Fastjson 参数


4.1 IgnoreErrorGetter

Fastjson 的序列化其实是依赖于类中的各个 getter,如果某个 getter 抛异常则会阻断整个序列化。但其实有些 getter 异常并非严重问题,此时就可以使用 SerializerFeature.IgnoreErrorGetter 参数忽略 getter 中抛出的异常:



public class Foo {
    private Long userId;
    @Deprecated
    private Long accountId;

    // getter 有异常抛出
    public Long getAccountId() {
        throw new RuntimeException("请使用 userId");
    }
}

// 这样打印日志,就不会被 getter 抛出的异常阻断了
log.info("foo={}", JSON.toJSONString(foo, SerializerFeature.IgnoreErrorGetter));


4.2 IgnoreNonFieldGetter

比如有个 Result包装类如下(注意 isError 方法),当被 Fastjson 序列化时,会输出 "error":false。如果希望忽略掉类似这种没有实体字段对应的 getter 方法,就可以追加 SerializerFeature.IgnoreNonFieldGetter 参数:



@Data
public class Result<T> {
    private boolean success;
    private T data;

    public boolean isError() {
        return !success;
    }
}

// 这样打印日志,就不会有 "error":false 了
log.info("result={}", JSON.toJSONString(result, SerializerFeature.IgnoreNonFieldGetter));

这个参数对于打印 Result 包装类非常有帮助。如果打印出 "error":false,那当你希望使用 error 关键字查询错误时,就会匹配到很多包含 error 却并非错误的无效数据。


五、不要遗漏异常堆栈

我们在第三篇【3.1 info方法】节中提到,异常值参数是不占用字符模板的,如果你的参数数量不匹配,很可能打印结果与预期不符。如果你这样写:


Exception e = new RuntimeException("blahblahblah");
log.error("exception={}", e); // 此时 IDEA 会给出警告:参数比占位符少

此时因为 e 与对应的{}位置匹配,Slf4j 会尝试将异常转为字符串拼到日志模板中,最终这句相当于:


log.error("exception={}", e.toString());

最终你只能得到 exception=blahblahblah,而堆栈就丢掉了。正确的做法是要保证异常参数不占用字符模板:


// 用 e.getMessage() 拼到日志信息后,同时有独立的 e 用于打印堆栈
log.error("exception={}", e.getMessage(), e);

最终会输出:


exception=blahblahblah
换行后会有堆栈信息

六、限制日志输出长度


6.1 限制日志文本最大长度

有时候一个 POJO 非常大,当我们通过 :

log.info("result={}", JSON.toJSONString(result))

打印日志时,整条日志就会变得很长。不但对性能会有影响,主要这么大的结果对实际问题排查也不见得有帮助。可以参考第四篇【3.2 Format modifiers】来限制消息最大长度,并将超出的部分丢弃:

%.-2000message


6.2 限制堆栈的层级

其实 Logback 天然支持,比如 %exception{50} 就可以只打印 50 层。同时 Logback 针对异常堆栈有更多的控制能力,可以参考官方文档 Evaluators[1]


七、将堆栈合并为一行

有些同学希望将堆栈在一行输出,保证通过管道(|)进行多层 grep 时捞到期望的记录。其实通过 Logback 配置就可以支持这个能力,主要用到我们在 【4.3.1 Conversion Word】中提过的 %replace


%replace(%exception){'[\r\n\t]+', '    '}%nopex


简单说明一下:

  • %replace(p){r, t}:将给到的 p,使用正则 r 进行匹配,命中的替换为 t,所以上边就是,将 %exception 中的 [\r\n\t](即换行、回车、Tab)替换为    (四个空格);
  • %nopex:如果不加,Logback 会自动在日志最后追加 %exception,导致异常堆栈打两遍(一遍我们自己转为一行的,一遍带原始换行的);

甚至,如果你对异常堆栈的长度有要求,参考第四篇【3.2 Format modifiers】和【六、限制日志输出长度】两节中的知识,我们还可以这样:

%.-10000replace(%exception{50}){'[\r\n\t]+', '    '}%nopex

即:

  • 只打印前 50 层堆栈;
  • 转为一行后,再限制最大长度为 10000,超过的部分丢弃尾部字符;


八、不建议使用 %method 和 %line

在 Logback 的配置中,可以通过 %method%line 输出方法名和行号。但这两项依赖于当前的堆栈轨迹 (StackTrace) ,而获取堆栈轨迹的代价比较高,日志一多就会占用大量的 CPU,所以一般情况不建议在日志中输出这些字段。如果对方法名有输出要求,可以直接硬编码到输出字符串中,比如:


log.info("queryUserInfo, request={}, result={}", request, result);

九、不要将日志输出至 Console

我们平时调用 System.out.println 时,默认输出位置就是控制台。Logback 也提供了 ch.qos.logback.core.ConsoleAppender 用于将日志输出至控制台。但:

  • 机器上线后,没有人会盯着控制台看,所以输出至控制台毫无意义,还浪费机器资源;
  • 本地 Debug 时,要么直接加断点,要么会翻日志文件,也基本不会检查控制台输出;
  • 通过 main 函数跑测试代码时,一般直接用 System.out.println,不涉及日志系统;

十、无用的 LogUtil

最近我接手了一些项目,发现打印日志时使用了一个额外写的工具类 LogUtil。但细看代码,发现它只是把 Slf4j 或 Logback 已有能力又实现了一遍,包括但不限于:

  1. 实现日志内容拼接,请见第三篇【3.1 info 方法】一节;
  2. 实现日志参数默认转 JSON;
  3. 日志超过最大长度截断,请见【6.1 限制日志文本最大长度】一节;
  4. 将异常堆栈合并在同一行输出,请见【七、将堆栈合并为一行】一节;
  5. 通过动态开关控制是否打印某些日志;
  6. 日志中追加 traceId,请见第三篇【五、MDC】、第四篇【五、MDC 中的 traceId】两节;

所以,请抛弃 LogUtil,通过正确配置,「直面」 Slf4j 提供的强大 API 吧。

十一、熟读《日志规约》

《阿里巴巴Java开发手册》[2]有专门一章是《日志规约》[3],建议熟读。其实整个《阿里巴巴Java开发手册》都应该熟读,花不了多少时间。

十二、一个小细节

请先看以下代码(假设没有添加【附1.1.1 场景一:参数自动转 JSON】中的能力):



@Data
public class Foo {
    private String bar;
}

Foo foo = new Foo();
foo.setBar("baz");

// 方案一(注意第一个参数里的冒号)
log.info("foo:{}", foo);
// 输出 foo:Foo{bar=baz}

// 方案二(注意第一个参数里的等号)
log.info("foo={}", JSON.toJSONString(foo));
// 输出 foo={"bar":"baz"}

看出两者的区别了吗?

方案一使用了 Lombok 的 @ToString 转字符串,其中的 Key-Value 之间使用的等号 = 分隔,所以在前边建议使用冒号,从而在查看日志时可以更快分辨记录的信息。


同样的,方案二因为使用的 JSON 格式中 Key-Value 之间使用的冒号 : 分隔,所以前边建议使用等号。


参考链接:

[1]https://logback.qos.ch/manual/layouts.html#Evaluators

[2]https://github.com/alibaba/p3c

[3]https://github.com/alibaba/p3c/blob/master/p3c-gitbook/异常日志/日志规约.md


来源  |  阿里云开发者公众号

作者  |  尚左

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
2月前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
2月前
|
存储 Java 关系型数据库
高效连接之道:Java连接池原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。频繁创建和关闭连接会消耗大量资源,导致性能瓶颈。为此,Java连接池技术通过复用连接,实现高效、稳定的数据库连接管理。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接池的基本操作、配置和使用方法,以及在电商应用中的具体应用示例。
86 5
|
2月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
1月前
|
Java
Java 异常处理:11 个异常处理最佳实践
本文深入探讨了Java异常处理的最佳实践,包括早抛出晚捕获、只捕获可处理异常、不忽略异常、抛出具体异常、正确包装异常、记录或抛出异常但不同时执行、不在finally中抛出异常、避免用异常控制流程、使用模板方法减少重复代码、抛出与方法相关的异常及异常处理后清理资源等内容,旨在提升代码质量和可维护性。
|
2月前
|
运维 Java 编译器
Java 异常处理:机制、策略与最佳实践
Java异常处理是确保程序稳定运行的关键。本文介绍Java异常处理的机制,包括异常类层次结构、try-catch-finally语句的使用,并探讨常见策略及最佳实践,帮助开发者有效管理错误和异常情况。
124 5
|
1月前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
2月前
|
安全 Java API
告别SimpleDateFormat:Java 8日期时间API的最佳实践
在Java开发中,处理日期和时间是一个基本而重要的任务。传统的`SimpleDateFormat`类因其简单易用而被广泛采用,但它存在一些潜在的问题,尤其是在多线程环境下。本文将探讨`SimpleDateFormat`的局限性,并介绍Java 8引入的新的日期时间API,以及如何使用这些新工具来避免潜在的风险。
44 5
|
2月前
|
Java 数据库连接 开发者
Java中的异常处理机制及其最佳实践####
在本文中,我们将探讨Java编程语言中的异常处理机制。通过深入分析try-catch语句、throws关键字以及自定义异常的创建与使用,我们旨在揭示如何有效地管理和响应程序运行中的错误和异常情况。此外,本文还将讨论一些最佳实践,以帮助开发者编写更加健壮和易于维护的代码。 ####
|
2月前
|
Java
Java 异常处理下篇:11 个异常处理最佳实践
本文深入探讨了 Java 异常处理的最佳实践,包括早抛出晚捕获、只捕获可处理的异常、不要忽略捕获的异常、抛出具体检查性异常、正确包装自定义异常、记录或抛出异常但不同时执行、避免在 `finally` 块中抛出异常、避免使用异常进行流程控制、使用模板方法处理重复的 `try-catch`、尽量只抛出与方法相关的异常以及异常处理后清理资源。通过遵循这些实践,可以提高代码的健壮性和可维护性。