解锁时间旅行新姿势!EMR DeltaLake 如何让你在大数据海洋中畅游历史,重塑决策瞬间?

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【8月更文挑战第26天】DeltaLake是由DataBricks公司开源的大数据存储框架,专为构建高效的湖仓一体架构设计。其特色功能Time-Travel查询允许用户访问数据的历史版本,极大增强了数据处理的灵活性与安全性。通过独特的文件结构和日志管理机制,DeltaLake实现了数据版本控制。用户可通过指定时间戳或版本号查询历史数据。

EMR DeltaLake 作为 DataBricks 公司开源并广泛应用于大数据处理领域的存储框架,为构建高效、可靠的湖仓架构提供了强有力的支持。其中,Time-Travel 查询是 DeltaLake 的一大亮点,它允许用户访问和查询数据的历史版本,极大地增强了数据处理的灵活性和安全性。本文将详细介绍 EMR DeltaLake 如何支持 Time-Travel 查询,并提供示例代码。

DeltaLake 的基础架构
DeltaLake 通过其独特的文件结构和日志管理机制,实现了对数据的版本控制。其核心在于 _delta_log 目录,该目录存储了表的所有元数据信息,包括每次提交(commit)的操作记录,如新增文件、删除文件、更新后的元数据信息等。DeltaLake 还定期将这些日志合并成 checkpoint 文件,以加速元数据的解析和查询效率。

Time-Travel 查询的实现
Time-Travel 查询的实现依赖于 DeltaLake 的多版本管理机制。用户可以通过指定时间戳或版本号来查询数据的特定历史版本。这一功能对于数据审计、回滚或重新计算等场景尤为重要。

示例代码
假设我们有一个名为 /delta/events 的 DeltaLake 表,现在我们想要查询该表在特定时间点的数据版本。

按时间戳查询
使用 timestampAsOf 选项来指定查询的时间戳。注意时间戳应为 date 或 timestamp 格式。

scala
val timestamp_string = "2023-04-01T12:00:00.000Z"
val df1 = spark.read.format("delta")
.option("timestampAsOf", timestamp_string)
.load("/delta/events")
df1.show()
这段代码将加载 /delta/events 表在指定时间戳(2023年4月1日12:00:00 UTC)时的数据版本。

按版本号查询
如果你知道具体的版本号,也可以使用 versionAsOf 选项来查询。

scala
val version = 10 // 假设版本号为10
val df2 = spark.read.format("delta")
.option("versionAsOf", version)
.load("/delta/events")
df2.show()
这段代码将加载 /delta/events 表在版本号为10时的数据版本。

注意事项
历史数据保留:默认情况下,DeltaLake 保存最近30天的提交历史。如果你需要访问更早期的数据,可能需要调整配置。
使用 VACUUM:为了释放不再需要的存储空间,可以定期运行 VACUUM 命令。但是,这可能会影响对早期版本的访问,因为 VACUUM 会删除不再被引用的数据和日志文件。
配置调整:通过调整 delta.logRetentionDuration 和 delta.deletedFileRetentionDuration 配置项,可以控制日志和已删除文件的保留时间。
总结
EMR DeltaLake 通过其先进的多版本管理机制,为用户提供了强大的 Time-Travel 查询能力。这一功能不仅提升了数据处理的灵活性,还增强了数据的安全性和可追溯性。通过简单的配置和示例代码,用户可以轻松实现对历史数据的访问和查询,满足各种复杂的数据处理需求。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
13天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
98 15
|
2月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
166 2
|
5月前
|
安全 数据管理 大数据
数据湖的未来已来:EMR DeltaLake携手阿里云DLF,重塑企业级数据处理格局
【8月更文挑战第26天】在大数据处理领域,阿里云EMR与DeltaLake的集成增强了数据处理能力。进一步结合阿里云DLF服务,实现了数据湖的一站式管理,自动化处理元数据及权限控制,简化管理流程。集成后的方案提升了数据安全性、可靠性和性能优化水平,让用户更专注业务价值。这一集成标志着数据湖技术向着自动化、安全和高效的未来迈出重要一步。
99 2
|
5月前
|
存储 大数据 数据处理
Delta Lake革新浪潮:EMR中的数据湖守护者,如何重塑大数据生态?
【8月更文挑战第26天】Delta Lake是一款开源大数据处理框架,以数据版本控制和ACID事务特性著称,在大数据领域崭露头角。在阿里云EMR平台上,它为用户提供高效可靠的数据处理方式,通过结构化的存储、事务日志实现数据版本控制和回滚。Delta Lake在EMR中实现了ACID事务,简化数据湖操作流程,支持时间旅行查询历史数据版本,优化存储格式提高读取速度,这些优势使其在开源社区和企业界获得广泛认可。
58 2
|
5月前
|
Java Spring 开发者
掌握Spring事务管理,打造无缝数据交互——实用技巧大公开!
【8月更文挑战第31天】在企业应用开发中,确保数据一致性和完整性至关重要。Spring框架提供了强大的事务管理机制,包括`@Transactional`注解和编程式事务管理,简化了事务处理。本文深入探讨Spring事务管理的基础知识与高级技巧,涵盖隔离级别、传播行为、超时时间等设置,并介绍如何使用`TransactionTemplate`和`PlatformTransactionManager`进行编程式事务管理。通过合理设计事务范围和选择合适的隔离级别,可以显著提高应用的稳定性和性能。掌握这些技巧,有助于开发者更好地应对复杂业务需求,提升应用质量和可靠性。
54 0
|
5月前
|
Java Spring 开发者
解锁 Spring Boot 自动化配置的黑科技:带你走进一键配置的高效开发新时代,再也不怕繁琐设置!
【8月更文挑战第31天】Spring Boot 的自动化配置机制极大简化了开发流程,使开发者能专注业务逻辑。通过 `@SpringBootApplication` 注解组合,特别是 `@EnableAutoConfiguration`,Spring Boot 可自动激活所需配置。例如,添加 JPA 依赖后,只需在 `application.properties` 配置数据库信息,即可自动完成 JPA 和数据源设置。这一机制基于多种条件注解(如 `@ConditionalOnClass`)实现智能配置。深入理解该机制有助于提升开发效率并更好地解决问题。
83 0
|
5月前
|
分布式计算 大数据 MaxCompute
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决
EMR Remote Shuffle Service实践问题之阿里云RSS的开源计划内容如何解决
|
5月前
|
分布式计算 测试技术 调度
EMR Remote Shuffle Service实践问题之集群中落地阿里云RSS如何解决
EMR Remote Shuffle Service实践问题之集群中落地阿里云RSS如何解决
|
3月前
|
SQL 存储 缓存
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
本文介绍了阿里云EMR StarRocks在数据湖分析领域的应用,涵盖StarRocks的数据湖能力、如何构建基于Paimon的实时湖仓、StarRocks与Paimon的最新进展及未来规划。文章强调了StarRocks在极速统一、简单易用方面的优势,以及在数据湖分析加速、湖仓分层建模、冷热融合及全链路ETL等场景的应用。
335 8
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse