Flink 分布式快照,神秘机制背后究竟隐藏着怎样的惊人奥秘?快来一探究竟!

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【8月更文挑战第26天】Flink是一款开源框架,支持有状态流处理与批处理任务。其核心功能之一为分布式快照,通过“检查点(Checkpoint)”机制确保系统能在故障发生时从最近的一致性状态恢复,实现可靠容错。Flink通过JobManager触发检查点,各节点暂停接收新数据并保存当前状态至稳定存储(如HDFS)。采用“异步屏障快照(Asynchronous Barrier Snapshotting)”技术,插入特殊标记“屏障(Barrier)”随数据流传播,在不影响整体流程的同时高效完成状态保存。例如可在Flink中设置每1000毫秒进行一次检查点并指定存储位置。

Flink 是一个用于有状态流处理和批处理的开源框架,而分布式快照在 Flink 中起着至关重要的作用,它确保了在出现故障时能够从之前的一个一致状态恢复,从而实现了容错机制。
首先,Flink 的分布式快照基于一种名为 “检查点(Checkpoint)” 的机制。检查点是 Flink 对分布式流处理应用程序状态的一致性快照。在分布式环境下,Flink 的任务可能在多个节点上并行执行,每个节点都可能有自己的状态。因此,要实现一个可靠的容错机制,就需要一种能够在分布式环境下捕获和恢复状态的方法。
Flink 的检查点机制是由一个协调器(通常是 JobManagerManager)触发的。当触发检查点时,协调器会向所有的任务发送一个信号,通知它们开始进行状态快照。每个任务接收到信号后,会将自己的当前状态写入到一个稳定的存储中,通常是分布式文件系统(如 HDFS)。
在写入状态之前,任务会先将其所有的输入流暂停,以确保在进行状态快照时不会有新的数据进入任务。然后,任务会将自己的状态写入到稳定存储中,并在完成后向协调器发送一个确认消息。当协调器接收到所有任务的确认消息后,就认为这个检查点已经成功完成。
为了实现高效的检查点,Flink 采用了一种名为 “异步屏障快照(Asynchronous Barrier Snapshotting)” 的技术。在这种技术中,Flink 会在输入流中插入一些特殊的标记,称为 “屏障(Barrier)”。这些屏障会随着数据在流中传播,并在到达任务时触发状态快照。
当一个任务接收到一个屏障时,它会将这个屏障之前的所有数据处理完毕,并将自己的状态写入到稳定存储中。然后,任务会继续处理屏障之后的数据。这样,Flink 就可以在不暂停整个流处理的情况下进行状态快照,从而实现了高效的容错机制。
下面是一个简单的 Flink 代码示例,展示了如何在 Flink 中启用检查点:
java
复制
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// 启用检查点,每 1000 毫秒进行一次检查点
env.enableCheckpointing(1000);

// 设置检查点存储位置
env.getCheckpointConfig

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
61 3
|
3月前
|
存储 数据处理 Apache
超越传统数据库:揭秘Flink状态机制,让你的数据处理效率飞升!
【8月更文挑战第26天】Apache Flink 在流处理领域以其高效实时的数据处理能力脱颖而出,其核心特色之一便是状态管理机制。不同于传统数据库依靠持久化存储及 ACID 事务确保数据一致性和可靠性,Flink 利用内存中的状态管理和分布式数据流模型实现了低延迟处理。Flink 的状态分为键控状态与非键控状态,前者依据数据键值进行状态维护,适用于键值对数据处理;后者与算子实例关联,用于所有输入数据共享的状态场景。通过 checkpointing 机制,Flink 在保障状态一致性的同时,提供了更适合流处理场景的轻量级解决方案。
57 0
|
1月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现
消息队列系统中的确认机制在分布式系统中如何实现
|
1月前
|
消息中间件 存储 监控
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
|
27天前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?
|
3月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?
|
3月前
|
消息中间件 Java Kafka
如何在Kafka分布式环境中保证消息的顺序消费?深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据管道和流处理设计的分布式平台,以其高效的消息发布与订阅功能著称。在分布式环境中确保消息按序消费颇具挑战。本文首先介绍了Kafka通过Topic分区实现消息排序的基本机制,随后详细阐述了几种保证消息顺序性的策略,包括使用单分区Topic、消费者组搭配单分区消费、幂等性生产者以及事务支持等技术手段。最后,通过一个Java示例演示了如何利用Kafka消费者确保消息按序消费的具体实现过程。
122 3
|
4月前
|
存储 缓存 监控
Flink内存管理机制及其参数调优
Flink内存管理机制及其参数调优
|
3月前
|
消息中间件 安全 Kafka
Flink与Kafka的终极联盟:揭秘如何在一瞬间切换SASL机制,保护您的数据不受黑客侵袭!
【8月更文挑战第7天】Apache Flink作为高性能流处理框架,在与Kafka集成时确保数据安全至关重要。通过配置`KafkaConsumer`使用SASL机制如SCRAM-SHA-256或PLAIN,可有效防止未授权访问。SCRAM-SHA-256采用强化的身份验证流程提高安全性,而PLAIN机制则相对简单。配置涉及设置`properties`参数,包括指定`sasl.mechanism`、`security.protocol`及JAAS认证信息。合理选择和配置这些参数对于保护Flink应用与Kafka间的数据通信安全至关重要。
71 0
|
29天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?

热门文章

最新文章