AI计算机视觉笔记三:WEB端部署YOLOv5

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 本文档介绍了如何将YOLOv5目标检测模型部署到Web端的方法,包括基于Flask和Streamlit两种实现方案。首先创建Python虚拟环境并安装必要的依赖库。接着详细展示了Flask方案下的前端HTML页面与后端Python逻辑代码,该方案利用Flask框架搭建服务器,处理实时视频流,并显示检测结果。随后介绍了Streamlit方案,该方案更简洁直观,适合快速开发交互式的机器学习应用。通过`streamlit run`命令即可启动应用,支持图像、视频及实时摄像头的目标检测演示。两种部署方式各有优势,Flask灵活性高,适用于复杂项目;而Streamlit则易于上手,便于快速原型设计。

一、介绍

最近接触网页大屏,所以就想把YOLOV5部署到WEB端,通过了解,知道了两个方法:

1、基于Flask部署YOLOv5目标检测模型。

2、基于Streamlit部署YOLOv5目标检测。

代码在github上,个人感觉两个比较好的,所以基于两份代码测试。

https://github.com/ngzhili/Yolov5-Real-Time-Object-Detection

GitHub - harshit-tech03/Fire_Detection: A fire detection web app using yolov5.

一、虚拟环境创建

1、创建虚拟环境

conda create -n yolov5_env python=3.8

2、激活环境

conda activate yolov5_env

3、下载yolov5

https://github.com/ultralytics/yolov5

4、安装yolov5

pip install -r requirements.txt

注意以下测试都是基于此环境测试

二、基于Flask部署YOLOv5目标检测模型。

1、安装环境

requirements.txt

flask
requests
black

matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0

tensorboard>=2.4.1

seaborn>=0.11.0
pandas

thop  # FLOPs computation

代码感觉相对简单,而且也挺详细的,所以直接上代码。

2、前端代码

index.html


<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <meta content="width=device-width, initial-scale=1.0" name="viewport">

    <title>YOLOV5 Real Time Inference</title>
    <style>
      .corner {
        border-radius: 25px;
        border: 5px solid #212aad;
        padding: 0px;
        width:60%;
        height:auto;
        text-align: center;
      }

      .video-container {
        justify-content: center;
        text-align: center;
        height:100%;
        /*border: 1px solid black;*/
      }

    </style>
  </head>

  <body >
      <div class="container">
        <div class="row" style="text-align: center; width:100%;">
          <img src="../static/pytorch.png" style="width:40px; position:relative; left: -10px; display:inline-block;">
            <h1 style="text-align: center; display:inline-block;">Template for YOLOV5 Object Detection Model Real-Time Inference Using Web Cam</h1>
          </img>
          <h2 style="text-align: center;">Built by Zhili</h2>
        </div>
      </div>

      <div class="video-container">
          <img src="{
  
  { url_for('video') }}" class="corner"></img>
          <!--<img src="../static/pytorch.png" class="corner"></img>-->
          <!--<img src="{
  
  { url_for('video') }}" width="50%"/>-->
      </div>
    </body>
</html>

3、后端代码

app.py

"""
Simple app to upload an image via a web form 
and view the inference results on the image in the browser.
"""
import argparse
import io
import os
from PIL import Image
import cv2
import numpy as np

import torch
from flask import Flask, render_template, request, redirect, Response

app = Flask(__name__)


#'''
# Load Pre-trained Model
#model = torch.hub.load(
#        "ultralytics/yolov5", "yolov5s", pretrained=True, force_reload=True
#        )#.autoshape()  # force_reload = recache latest code
#'''
# Load Custom Model
#model = torch.hub.load("ultralytics/yolov5", "custom", path = "./best_damage.pt", force_reload=True)
model = torch.hub.load('./yolov5', 'custom', './yolov5s.pt',source='local')
# Set Model Settings
model.eval()
model.conf = 0.6  # confidence threshold (0-1)
model.iou = 0.45  # NMS IoU threshold (0-1) 

from io import BytesIO

def gen():
    cap=cv2.VideoCapture(0)
    # Read until video is completed
    while(cap.isOpened()):

        # Capture frame-by-fram ## read the camera frame
        success, frame = cap.read()
        if success == True:

            ret,buffer=cv2.imencode('.jpg',frame)
            frame=buffer.tobytes()

            #print(type(frame))

            img = Image.open(io.BytesIO(frame))
            results = model(img, size=640)
            #print(results)
            #print(results.pandas().xyxy[0])
            #results.render()  # updates results.imgs with boxes and labels
            results.print()  # print results to screen
            #results.show() 
            #print(results.imgs)
            #print(type(img))
            #print(results)
            #plt.imshow(np.squeeze(results.render()))
            #print(type(img))
            #print(img.mode)

            #convert remove single-dimensional entries from the shape of an array
            img = np.squeeze(results.render()) #RGB
            # read image as BGR
            img_BGR = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) #BGR

            #print(type(img))
            #print(img.shape)
            #frame = img
            #ret,buffer=cv2.imencode('.jpg',img)
            #frame=buffer.tobytes()
            #print(type(frame))
            #for img in results.imgs:
                #img = Image.fromarray(img)
            #ret,img=cv2.imencode('.jpg',img)
            #img=img.tobytes()

            #encode output image to bytes
            #img = cv2.imencode('.jpg', img)[1].tobytes()
            #print(type(img))
        else:
            break
        #print(cv2.imencode('.jpg', img)[1])

        #print(b)
        #frame = img_byte_arr

        # Encode BGR image to bytes so that cv2 will convert to RGB
        frame = cv2.imencode('.jpg', img_BGR)[1].tobytes()
        #print(frame)

        yield(b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')


@app.route('/')
def index():

    return render_template('index.html')

@app.route('/video')
def video():
    """Video streaming route. Put this in the src attribute of an img tag."""

    return Response(gen(),
                        mimetype='multipart/x-mixed-replace; boundary=frame')
'''                        
@app.route('/video')
def video():
    return Response(generate_frames(),mimetype='multipart/x-mixed-replace; boundary=frame')
'''
'''
@app.route("/", methods=["GET", "POST"])
def predict():
    if request.method == "POST":
        if "file" not in request.files:
            return redirect(request.url)
        file = request.files["file"]
        if not file:
            return
        img_bytes = file.read()
        img = Image.open(io.BytesIO(img_bytes))
        results = model(img, size=640)
        # for debugging
        # data = results.pandas().xyxy[0].to_json(orient="records")
        # return data
        results.render()  # updates results.imgs with boxes and labels
        for img in results.imgs:
            img_base64 = Image.fromarray(img)
            img_base64.save("static/image0.jpg", format="JPEG")
        return redirect("static/image0.jpg")
    return render_template("index.html")
'''

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Flask app exposing yolov5 models")
    parser.add_argument("--port", default=5000, type=int, help="port number")
    args = parser.parse_args()
    '''
    model = torch.hub.load(
        "ultralytics/yolov5", "yolov5s", pretrained=True, force_reload=True
    ).autoshape()  # force_reload = recache latest code
    model.eval()
    '''
    app.run(host="0.0.0.0", port=args.port)  # debug=True causes Restarting with stat

# Docker Shortcuts
# docker build --tag yolov5 .
# docker run --env="DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" --device="/dev/video0:/dev/video0" yolov5

4、运行结果

执行python app.py

image.png

image.png

三、基于Streamlit部署YOLOv5目标检测。

1、什么是Streamlit

Streamlit 是一个用于数据科学和机器学习的开源 Python 框架。它提供了一种简单的方式来构建交互式应用程序,使数据科学家和机器学习工程师可以更轻松地将他们的模型展示给其他人。

以下是 Streamlit 常用的一些方法:

st.write():打印文本、数据框、图表等。
st.title():创建标题。
st.header():创建大标题。
st.subheader():创建小标题。
st.text():打印文本。
st.markdown():打印 Markdown 文本。
st.latex():打印 LaTeX 公式。
st.dataframe():显示数据框。
st.table():显示表格。
st.line_chart():创建线形图。
st.area_chart():创建面积图。
st.bar_chart():创建条形图。
st.map():创建地图。
st.pyplot():显示 Matplotlib 图表。
st.altair_chart():显示 Altair 图表。
st.vega_lite_chart():显示 Vega-Lite 图表。
st.bokeh_chart():显示 Bokeh 图表。
st.plotly_chart():显示 Plotly 图表。
st.image():显示图像。
st.audio():显示音频。
st.video():显示视频。
st.file_uploader():上传文件。
st.download_button():下载文件。
以上是 Streamlit 的一些常用方法,可以根据需要选择使用。

只能説Streamlit比Flask更简单,更容易看懂。

在上面环境的基础上在安装一次环境

2、安装环境

requirements.txt

yolov5
opencv_python_headless
streamlit
numpy
Pillow
torch
torchvision
PyYAML
tqdm
matplotlib
requests
scipy
tensorboard
pandas
seaborn
streamlit-webrtc
IPython

3、代码

代码不分前后端

Fire_Detection.py

import streamlit as st
import cv2
import numpy as np
import av
import torch
import tempfile
from PIL import Image

@st.cache
def load_model():
    model = torch.hub.load('ultralytics/yolov5','custom',path="weights/last.pt",force_reload=True)
    return model

demo_img = "fire.9.png"
demo_video = "Fire_Video.mp4"

st.title('Fire Detection')
st.sidebar.title('App Mode')


app_mode = st.sidebar.selectbox('Choose the App Mode',
                                ['About App','Run on Image','Run on Video','Run on WebCam'])

if app_mode == 'About App':
    st.subheader("About")
    st.markdown("<h5>This is the Fire Detection App created with custom trained models using YoloV5</h5>",unsafe_allow_html=True)

    st.markdown("- <h5>Select the App Mode in the SideBar</h5>",unsafe_allow_html=True)
    st.image("Images/first_1.png")
    st.markdown("- <h5>Upload the Image and Detect the Fires in Images</h5>",unsafe_allow_html=True)
    st.image("Images/second_2.png")
    st.markdown("- <h5>Upload the Video and Detect the fires in Videos</h5>",unsafe_allow_html=True)
    st.image("Images/third_3.png")
    st.markdown("- <h5>Live Detection</h5>",unsafe_allow_html=True)
    st.image("Images/fourth_4.png")
    st.markdown("- <h5>Click Start to start the camera</h5>",unsafe_allow_html=True)
    st.markdown("- <h5>Click Stop to stop the camera</h5>",unsafe_allow_html=True)

    st.markdown("""
                ## Features
- Detect on Image
- Detect on Videos
- Live Detection
## Tech Stack
- Python
- PyTorch
- Python CV
- Streamlit
- YoloV5
## 🔗 Links
[![twitter](https://img.shields.io/badge/Github-1DA1F2?style=for-the-badge&logo=github&logoColor=white)](https://github.com/AntroSafin)
""")


if app_mode == 'Run on Image':
    st.subheader("Detected Fire:")
    text = st.markdown("")

    st.sidebar.markdown("---")
    # Input for Image
    img_file = st.sidebar.file_uploader("Upload an Image",type=["jpg","jpeg","png"])
    if img_file:
        image = np.array(Image.open(img_file))
    else:
        image = np.array(Image.open(demo_img))

    st.sidebar.markdown("---")
    st.sidebar.markdown("**Original Image**")
    st.sidebar.image(image)

    # predict the image
    model = load_model()
    results = model(image)
    length = len(results.xyxy[0])
    output = np.squeeze(results.render())
    text.write(f"<h1 style='text-align: center; color:red;'>{length}</h1>",unsafe_allow_html = True)
    st.subheader("Output Image")
    st.image(output,use_column_width=True)

if app_mode == 'Run on Video':
    st.subheader("Detected Fire:")
    text = st.markdown("")

    st.sidebar.markdown("---")

    st.subheader("Output")
    stframe = st.empty()

    #Input for Video
    video_file = st.sidebar.file_uploader("Upload a Video",type=['mp4','mov','avi','asf','m4v'])
    st.sidebar.markdown("---")
    tffile = tempfile.NamedTemporaryFile(delete=False)

    if not video_file:
        vid = cv2.VideoCapture(demo_video)
        tffile.name = demo_video
    else:
        tffile.write(video_file.read())
        vid = cv2.VideoCapture(tffile.name)

    st.sidebar.markdown("**Input Video**")
    st.sidebar.video(tffile.name)

    # predict the video
    while vid.isOpened():
        ret, frame = vid.read()
        if not ret:
            break
        frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
        model = load_model()
        results = model(frame)
        length = len(results.xyxy[0])
        output = np.squeeze(results.render())
        text.write(f"<h1 style='text-align: center; color:red;'>{length}</h1>",unsafe_allow_html = True)
        stframe.image(output)

if app_mode == 'Run on WebCam':
    st.subheader("Detected Fire:")
    text = st.markdown("")

    st.sidebar.markdown("---")

    st.subheader("Output")
    stframe = st.empty()

    run = st.sidebar.button("Start")
    stop = st.sidebar.button("Stop")
    st.sidebar.markdown("---")

    cam = cv2.VideoCapture(0)
    if(run):
        while(True):
            if(stop):
                break
            ret,frame = cam.read()
            frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
            model = load_model()
            results = model(frame)
            length = len(results.xyxy[0])
            output = np.squeeze(results.render())
            text.write(f"<h1 style='text-align: center; color:red;'>{length}</h1>",unsafe_allow_html = True)
            stframe.image(output)

4、运行结果

运行指令

 streamlit run Fire_Detection.py

image.png
会自动打开网页
image.png

demo提供了图片测试,视频测试,和摄像头几个方式的测试方法。由于使用的模型是训练好的模型,所以yolo版本不能修改,只能联网下载。
image.png

如果想用自己的yolov5

那修改加载模型,改成本地加载,模型也需要修改。

image.png

四、总结

通过两个方式,个人对部署web有了个相对的简单的认识。

在此感谢github,和网友提供的代码。

相关文章
|
15天前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
207 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
12天前
|
存储 人工智能 弹性计算
NVIDIA NIM on ACK:优化生成式AI模型的部署与管理
本文结合NVIDIA NIM和阿里云容器服务,提出了基于ACK的完整服务化管理方案,用于优化生成式AI模型的部署和管理。
|
10天前
|
人工智能 资源调度 API
AnythingLLM:34K Star!一键上传文件轻松打造个人知识库,构建只属于你的AI助手,附详细部署教程
AnythingLLM 是一个全栈应用程序,能够将文档、资源转换为上下文,支持多种大语言模型和向量数据库,提供智能聊天功能。
2502 14
|
8天前
|
应用服务中间件 Linux nginx
部署使用 CHAT-NEXT-WEB 基于 Deepseek
本文介绍如何在阿里云轻量服务器上部署基于 `Deepseek` 的 `CHAT-NEXT-WEB` 项目。首先,准备一台 Linux 服务器并安装 Docker,确保防火墙允许特定端口访问。接着,通过阿里云容器镜像服务解决国内网络限制问题,将镜像推送到私有仓库并拉取到本地。配置并启动 `chat-next` 项目,使用 Deepseek API 进行优化。最后,安装 Nginx 和 Certbot 配置 HTTPS 访问,确保安全性和自动续签。整个过程需严格遵循官方文档,以避免因网络问题导致的安装失败。
|
1月前
|
人工智能 弹性计算 JSON
AI大模型复习“搭子”—部署流程演示
本文主要介绍文档智能,介绍利用大模型构建知识库和AI学习助手的部署流程,主要包括以下几方面的内容: 1.什么是文档智能 2.文档智能 & RAG 3.基于文档智能和百炼平台的RAG应用案例
|
1月前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
84 10
|
1月前
|
存储 人工智能 Serverless
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。
|
9月前
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
708 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
5月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。

热门文章

最新文章