AI计算机视觉笔记二:基于YOLOV5的CPU版本部署openvino

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
简介: 本文档详细记录了YOLOv5模型在CPU环境下的部署流程及性能优化方法。首先,通过设置Python虚拟环境并安装PyTorch等依赖库,在CPU环境下成功运行YOLOv5模型的示例程序。随后,介绍了如何将PyTorch模型转换为ONNX格式,并进一步利用OpenVINO工具包进行优化,最终实现模型在CPU上的高效运行。通过OpenVINO的加速,即使是在没有GPU支持的情况下,模型的推理速度也从约20帧每秒提高到了50多帧每秒,显著提升了性能。此文档对希望在资源受限设备上部署高性能计算机视觉模型的研究人员和工程师具有较高的参考价值。

一、CPU版本DEMO测试

1、创建一个新的虚拟环境

conda create -n course_torch_openvino python=3.8
AI 代码解读

2、激活环境

conda activate course_torch_openvino
AI 代码解读

3、安装pytorch cpu版本

pip install torch torchvision torchaudio  -i https://pypi.tuna.tsinghua.edu.cn/simple
AI 代码解读

image.png

4、安装

使用的是yolov5-5版本,github上下载。

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
AI 代码解读

image.png

5、运行demo

python demo.py
AI 代码解读

完整代码


import cv2
import numpy as np
import torch
import time

# model = torch.hub.load('./yolov5', 'custom', path='./weights/ppe_yolo_n.pt',source='local')  # local repo
model = torch.hub.load('./yolov5', 'custom', 'weights/poker_n.pt',source='local')
model.conf = 0.4

cap = cv2.VideoCapture(0)

fps_time = time.time()

while True:

    ret,frame = cap.read()

    frame = cv2.flip(frame,1)

    img_cvt = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)

    # Inference
    results = model(img_cvt)
    result_np = results.pandas().xyxy[0].to_numpy()

    for box in result_np:
        l,t,r,b = box[:4].astype('int')

        cv2.rectangle(frame,(l,t),(r,b),(0,255,0),5)
        cv2.putText(frame,str(box[-1]),(l,t-20),cv2.FONT_ITALIC,1,(0,255,0),2)

    now = time.time()
    fps_text = 1/(now - fps_time)
    fps_time =  now

    cv2.putText(frame,str(round(fps_text,2)),(50,50),cv2.FONT_ITALIC,1,(0,255,0),2)


    cv2.imshow('demo',frame)

    if cv2.waitKey(10) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()
AI 代码解读

运行正常

二、YOLOV5转换成openvino

1、安装onnx

pip install onnx==1.11.0
AI 代码解读

image.png

2、修改文件

修改export.py 的第121行,修改成

opset_version=10
AI 代码解读

3###、导出onnx
使用训练好的best.pt文件,把best.pt转成onnx文件

转换命令为:

python export.py --weights ../weights/best.pt --img 640 --batch 1
AI 代码解读

4、转成openvino

转换前先安装环境

pip install openvino-dev[onnx]==2021.4.0 
pip install openvino==2021.4.0
AI 代码解读

image.png

验证一下,输入mo -h

image.png

接下来转换模型,使用下面命令导出模型

mo --input_model weights/best.onnx  --model_name weights/ir_model   -s 255 --reverse_input_channels --output Conv_294,Conv_245,Conv_196
AI 代码解读

会生成3个文件, ir_model.xml就是要用的文件。

5、运行

python yolov5_demo.py -i cam -m weights/ir_model.xml   -d CPU
AI 代码解读

代码


import logging
import os
import sys
from argparse import ArgumentParser, SUPPRESS
from math import exp as exp
from time import time,sleep
import numpy as np
import cv2
from openvino.inference_engine import IENetwork, IECore

logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.INFO, stream=sys.stdout)
log = logging.getLogger()


def build_argparser():
    parser = ArgumentParser(add_help=False)
    args = parser.add_argument_group('Options')
    args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
    args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
                      required=True, type=str)
    args.add_argument("-i", "--input", help="Required. Path to an image/video file. (Specify 'cam' to work with "
                                            "camera)", required=True, type=str)
    args.add_argument("-l", "--cpu_extension",
                      help="Optional. Required for CPU custom layers. Absolute path to a shared library with "
                           "the kernels implementations.", type=str, default=None)
    args.add_argument("-d", "--device",
                      help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is"
                           " acceptable. The sample will look for a suitable plugin for device specified. "
                           "Default value is CPU", default="CPU", type=str)

    args.add_argument("-t", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
                      default=0.5, type=float)
    args.add_argument("-iout", "--iou_threshold", help="Optional. Intersection over union threshold for overlapping "
                                                       "detections filtering", default=0.4, type=float)

    return parser


class YoloParams:
    # ------------------------------------------- Extracting layer parameters ------------------------------------------
    # Magic numbers are copied from yolo samples
    def __init__(self,  side):
        self.num = 3 #if 'num' not in param else int(param['num'])
        self.coords = 4 #if 'coords' not in param else int(param['coords'])
        self.classes = 80 #if 'classes' not in param else int(param['classes'])
        self.side = side
        self.anchors = [10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0,198.0,373.0, 326.0] #if 'anchors' not in param else [float(a) for a in param['anchors'].split(',')]




def letterbox(img, size=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
    # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
    shape = img.shape[:2]  # current shape [height, width]
    w, h = size

    # Scale ratio (new / old)
    r = min(h / shape[0], w / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = w - new_unpad[0], h - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (w, h)
        ratio = w / shape[1], h / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border

    top2, bottom2, left2, right2 = 0, 0, 0, 0
    if img.shape[0] != h:
        top2 = (h - img.shape[0])//2
        bottom2 = top2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    elif img.shape[1] != w:
        left2 = (w - img.shape[1])//2
        right2 = left2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    return img


def scale_bbox(x, y, height, width, class_id, confidence, im_h, im_w, resized_im_h=640, resized_im_w=640):
    gain = min(resized_im_w / im_w, resized_im_h / im_h)  # gain  = old / new
    pad = (resized_im_w - im_w * gain) / 2, (resized_im_h - im_h * gain) / 2  # wh padding
    x = int((x - pad[0])/gain)
    y = int((y - pad[1])/gain)

    w = int(width/gain)
    h = int(height/gain)

    xmin = max(0, int(x - w / 2))
    ymin = max(0, int(y - h / 2))
    xmax = min(im_w, int(xmin + w))
    ymax = min(im_h, int(ymin + h))
    # Method item() used here to convert NumPy types to native types for compatibility with functions, which don't
    # support Numpy types (e.g., cv2.rectangle doesn't support int64 in color parameter)
    return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id.item(), confidence=confidence.item())


def entry_index(side, coord, classes, location, entry):
    side_power_2 = side ** 2
    n = location // side_power_2
    loc = location % side_power_2
    return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)


def parse_yolo_region(blob, resized_image_shape, original_im_shape, params, threshold):
    # ------------------------------------------ Validating output parameters ------------------------------------------    

    out_blob_n, out_blob_c, out_blob_h, out_blob_w = blob.shape
    predictions = 1.0/(1.0+np.exp(-blob)) 


    # ------------------------------------------ Extracting layer parameters -------------------------------------------
    orig_im_h, orig_im_w = original_im_shape
    resized_image_h, resized_image_w = resized_image_shape
    objects = list()

    side_square = params.side * params.side

    # ------------------------------------------- Parsing YOLO Region output -------------------------------------------
    bbox_size = int(out_blob_c/params.num) #4+1+num_classes
    index=0
    for row, col, n in np.ndindex(params.side, params.side, params.num):
        bbox = predictions[0, n*bbox_size:(n+1)*bbox_size, row, col]
        x, y, width, height, object_probability = bbox[:5]
        class_probabilities = bbox[5:]
        if object_probability < threshold:
            continue
        x = (2*x - 0.5 + col)*(resized_image_w/out_blob_w)
        y = (2*y - 0.5 + row)*(resized_image_h/out_blob_h)
        if int(resized_image_w/out_blob_w) == 8 & int(resized_image_h/out_blob_h) == 8: #80x80, 
            idx = 0
        elif int(resized_image_w/out_blob_w) == 16 & int(resized_image_h/out_blob_h) == 16: #40x40
            idx = 1
        elif int(resized_image_w/out_blob_w) == 32 & int(resized_image_h/out_blob_h) == 32: # 20x20
            idx = 2

        width = (2*width)**2* params.anchors[idx * 6 + 2 * n]
        height = (2*height)**2 * params.anchors[idx * 6 + 2 * n + 1]
        class_id = np.argmax(class_probabilities)
        confidence = object_probability
        objects.append(scale_bbox(x=x, y=y, height=height, width=width, class_id=class_id, confidence=confidence,im_h=orig_im_h, im_w=orig_im_w, resized_im_h=resized_image_h, resized_im_w=resized_image_w))
        if index >30:
            break
        index+=1
    return objects


def intersection_over_union(box_1, box_2):
    width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin'])
    height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin'])
    if width_of_overlap_area < 0 or height_of_overlap_area < 0:
        area_of_overlap = 0
    else:
        area_of_overlap = width_of_overlap_area * height_of_overlap_area
    box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin'])
    box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin'])
    area_of_union = box_1_area + box_2_area - area_of_overlap
    if area_of_union == 0:
        return 0
    return area_of_overlap / area_of_union


def main():
    args = build_argparser().parse_args()

    # ------------- 1. Plugin initialization for specified device and load extensions library if specified -------------
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, "CPU")
    # -------------------- 2. Reading the IR generated by the Model Optimizer (.xml and .bin files) --------------------
    model = args.model
    net = ie.read_network(model=model)

    # ---------------------------------------------- 4. Preparing inputs -----------------------------------------------
    input_blob = next(iter(net.input_info))

    #  Defaulf batch_size is 1
    net.batch_size = 1

    # Read and pre-process input images
    n, c, h, w = net.input_info[input_blob].input_data.shape

    # labels_map = [x.strip() for x in f]
    labels_map = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush']

    input_stream = 0 if args.input == "cam" else args.input

    is_async_mode = True
    cap = cv2.VideoCapture(input_stream)
    number_input_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    number_input_frames = 1 if number_input_frames != -1 and number_input_frames < 0 else number_input_frames

    wait_key_code = 1

    # Number of frames in picture is 1 and this will be read in cycle. Sync mode is default value for this case
    if number_input_frames != 1:
        ret, frame = cap.read()
    else:
        is_async_mode = False
        wait_key_code = 0

    # ----------------------------------------- 5. Loading model to the plugin -----------------------------------------
    exec_net = ie.load_network(network=net, num_requests=2, device_name=args.device)

    cur_request_id = 0
    next_request_id = 1
    render_time = 0
    parsing_time = 0

    # ----------------------------------------------- 6. Doing inference -----------------------------------------------
    initial_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    initial_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    origin_im_size = (initial_h,initial_w)
    while cap.isOpened():
        # Here is the first asynchronous point: in the Async mode, we capture frame to populate the NEXT infer request
        # in the regular mode, we capture frame to the CURRENT infer request

        if is_async_mode:
            ret, next_frame = cap.read()
        else:
            ret, frame = cap.read()

        if not ret:
            break

        if is_async_mode:
            request_id = next_request_id
            in_frame = letterbox(frame, (w, h))
        else:
            request_id = cur_request_id
            in_frame = letterbox(frame, (w, h))

        in_frame0 = in_frame
        # resize input_frame to network size
        in_frame = in_frame.transpose((2, 0, 1))  # Change data layout from HWC to CHW
        in_frame = in_frame.reshape((n, c, h, w))

        # Start inference
        start_time = time()
        exec_net.start_async(request_id=request_id, inputs={input_blob: in_frame})


        # Collecting object detection results
        objects = list()
        if exec_net.requests[cur_request_id].wait(-1) == 0:
            output = exec_net.requests[cur_request_id].output_blobs
            start_time = time()

            for layer_name, out_blob in output.items():
                layer_params = YoloParams(side=out_blob.buffer.shape[2])
                objects += parse_yolo_region(out_blob.buffer, in_frame.shape[2:],
                                             frame.shape[:-1], layer_params,
                                             args.prob_threshold)


            parsing_time = time() - start_time


        # Filtering overlapping boxes with respect to the --iou_threshold CLI parameter
        objects = sorted(objects, key=lambda obj : obj['confidence'], reverse=True)
        for i in range(len(objects)):
            if objects[i]['confidence'] == 0:
                continue
            for j in range(i + 1, len(objects)):
                if intersection_over_union(objects[i], objects[j]) > args.iou_threshold:
                    objects[j]['confidence'] = 0

        # Drawing objects with respect to the --prob_threshold CLI parameter
        objects = [obj for obj in objects if obj['confidence'] >= args.prob_threshold]




        for obj in objects:
            # Validation bbox of detected object
            if obj['xmax'] > origin_im_size[1] or obj['ymax'] > origin_im_size[0] or obj['xmin'] < 0 or obj['ymin'] < 0:
                continue
            color = (0,255,0)
            det_label = labels_map[obj['class_id']] if labels_map and len(labels_map) >= obj['class_id'] else \
                str(obj['class_id'])


            cv2.rectangle(frame, (obj['xmin'], obj['ymin']), (obj['xmax'], obj['ymax']), color, 2)
            cv2.putText(frame,
                        "#" + det_label + ' ' + str(round(obj['confidence'] * 100, 1)) + ' %',
                        (obj['xmin'], obj['ymin'] - 7), cv2.FONT_ITALIC, 1, color, 2)

        # Draw performance stats over frame
        async_mode_message = "Async mode: ON"if is_async_mode else "Async mode: OFF"

        cv2.putText(frame, async_mode_message, (10, int(origin_im_size[0] - 20)), cv2.FONT_ITALIC, 1,
                    (10, 10, 200), 2)

        fps_time = time() - start_time
        if fps_time !=0:
            fps = 1 / fps_time
            cv2.putText(frame, 'fps:'+str(round(fps,2)), (50, 50), cv2.FONT_ITALIC, 1, (0, 255, 0), 2)

        cv2.imshow("DetectionResults", frame)


        if is_async_mode:
            cur_request_id, next_request_id = next_request_id, cur_request_id
            frame = next_frame

        key = cv2.waitKey(wait_key_code)
        # ESC key
        if key == 27:
            break
        # Tab key
        if key == 9:
            exec_net.requests[cur_request_id].wait()
            is_async_mode = not is_async_mode
            log.info("Switched to {} mode".format("async" if is_async_mode else "sync"))

    cv2.destroyAllWindows()

if __name__ == '__main__':
    sys.exit(main() or 0)
AI 代码解读

三、总结

通过openvino加速,CPU没有GPU下,从原本的20帧左右提升到50多帧,效果还可以,就 是用自己的模型,训练出来的效果不怎么好。

使用树莓派等嵌入板子使用openvino效果还可以。

目录
打赏
0
0
0
0
46
分享
相关文章
中央网信办部署开展“清朗·整治AI技术滥用”专项行动
中央网信办近日印发通知,启动为期3个月的“清朗·整治AI技术滥用”专项行动,旨在规范AI服务与应用,促进行业健康发展,保障公民权益。行动分两个阶段:第一阶段聚焦源头治理,包括清理违规AI程序、加强生成内容标识管理等;第二阶段集中整治利用AI制作谣言、不实信息、色情低俗内容及侵权行为等问题。此次行动将强化平台责任,提升技术检测能力,推动AI技术合法合规使用,维护网络环境清朗。
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
174 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频
魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。
924 41
短短时间,疯狂斩获1.9k star,开源AI神器AingDesk:一键部署上百模型,本地运行还能联网搜索!
AingDesk 是一款开源的本地 AI 模型管理工具,已获 1.9k Star。它支持一键部署上百款大模型(如 DeepSeek、Llama),适配 CPU/GPU,可本地运行并联网搜索。五大核心功能包括零门槛模型部署、实时联网搜证、私人知识库搭建、跨平台共享和智能体工厂,满足学术、办公及团队协作需求。相比 Ollama 和 Cherry Studio,AingDesk 更简单易用,适合技术小白、团队管理者和隐私敏感者。项目地址:https://github.com/aingdesk/AingDesk。
269 3
阿里云 AI 搜索开放平台新功能发布:新增GTE自部署模型
阿里云 AI搜索开放平台正式推出 GTE 多语言通用文本向量模型(iic/gte_sentence-embedding_multilingual-base)
165 4
Windows版来啦!Qwen3+MCPs,用AI自动发布小红书图文/视频笔记!
上一篇用 Qwen3+MCPs实现AI自动发小红书的最佳实践 有超多小伙伴关注,同时也排队在蹲Windows版本的教程。
403 1
Python测量CPU和内存使用率
这些示例帮助您了解如何在Python中测量CPU和内存使用率。根据需要,可以进一步完善这些示例,例如可视化结果或限制程序在特定范围内的资源占用。
104 22

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问