AI计算机视觉笔记二:基于YOLOV5的CPU版本部署openvino

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 本文档详细记录了YOLOv5模型在CPU环境下的部署流程及性能优化方法。首先,通过设置Python虚拟环境并安装PyTorch等依赖库,在CPU环境下成功运行YOLOv5模型的示例程序。随后,介绍了如何将PyTorch模型转换为ONNX格式,并进一步利用OpenVINO工具包进行优化,最终实现模型在CPU上的高效运行。通过OpenVINO的加速,即使是在没有GPU支持的情况下,模型的推理速度也从约20帧每秒提高到了50多帧每秒,显著提升了性能。此文档对希望在资源受限设备上部署高性能计算机视觉模型的研究人员和工程师具有较高的参考价值。

一、CPU版本DEMO测试

1、创建一个新的虚拟环境

conda create -n course_torch_openvino python=3.8

2、激活环境

conda activate course_torch_openvino

3、安装pytorch cpu版本

pip install torch torchvision torchaudio  -i https://pypi.tuna.tsinghua.edu.cn/simple

image.png

4、安装

使用的是yolov5-5版本,github上下载。

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

image.png

5、运行demo

python demo.py

完整代码


import cv2
import numpy as np
import torch
import time

# model = torch.hub.load('./yolov5', 'custom', path='./weights/ppe_yolo_n.pt',source='local')  # local repo
model = torch.hub.load('./yolov5', 'custom', 'weights/poker_n.pt',source='local')
model.conf = 0.4

cap = cv2.VideoCapture(0)

fps_time = time.time()

while True:

    ret,frame = cap.read()

    frame = cv2.flip(frame,1)

    img_cvt = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)

    # Inference
    results = model(img_cvt)
    result_np = results.pandas().xyxy[0].to_numpy()

    for box in result_np:
        l,t,r,b = box[:4].astype('int')

        cv2.rectangle(frame,(l,t),(r,b),(0,255,0),5)
        cv2.putText(frame,str(box[-1]),(l,t-20),cv2.FONT_ITALIC,1,(0,255,0),2)

    now = time.time()
    fps_text = 1/(now - fps_time)
    fps_time =  now

    cv2.putText(frame,str(round(fps_text,2)),(50,50),cv2.FONT_ITALIC,1,(0,255,0),2)


    cv2.imshow('demo',frame)

    if cv2.waitKey(10) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

运行正常

二、YOLOV5转换成openvino

1、安装onnx

pip install onnx==1.11.0

image.png

2、修改文件

修改export.py 的第121行,修改成

opset_version=10

3###、导出onnx
使用训练好的best.pt文件,把best.pt转成onnx文件

转换命令为:

python export.py --weights ../weights/best.pt --img 640 --batch 1

4、转成openvino

转换前先安装环境

pip install openvino-dev[onnx]==2021.4.0 
pip install openvino==2021.4.0

image.png

验证一下,输入mo -h

image.png

接下来转换模型,使用下面命令导出模型

mo --input_model weights/best.onnx  --model_name weights/ir_model   -s 255 --reverse_input_channels --output Conv_294,Conv_245,Conv_196

会生成3个文件, ir_model.xml就是要用的文件。

5、运行

python yolov5_demo.py -i cam -m weights/ir_model.xml   -d CPU

代码


import logging
import os
import sys
from argparse import ArgumentParser, SUPPRESS
from math import exp as exp
from time import time,sleep
import numpy as np
import cv2
from openvino.inference_engine import IENetwork, IECore

logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.INFO, stream=sys.stdout)
log = logging.getLogger()


def build_argparser():
    parser = ArgumentParser(add_help=False)
    args = parser.add_argument_group('Options')
    args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
    args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
                      required=True, type=str)
    args.add_argument("-i", "--input", help="Required. Path to an image/video file. (Specify 'cam' to work with "
                                            "camera)", required=True, type=str)
    args.add_argument("-l", "--cpu_extension",
                      help="Optional. Required for CPU custom layers. Absolute path to a shared library with "
                           "the kernels implementations.", type=str, default=None)
    args.add_argument("-d", "--device",
                      help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is"
                           " acceptable. The sample will look for a suitable plugin for device specified. "
                           "Default value is CPU", default="CPU", type=str)

    args.add_argument("-t", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
                      default=0.5, type=float)
    args.add_argument("-iout", "--iou_threshold", help="Optional. Intersection over union threshold for overlapping "
                                                       "detections filtering", default=0.4, type=float)

    return parser


class YoloParams:
    # ------------------------------------------- Extracting layer parameters ------------------------------------------
    # Magic numbers are copied from yolo samples
    def __init__(self,  side):
        self.num = 3 #if 'num' not in param else int(param['num'])
        self.coords = 4 #if 'coords' not in param else int(param['coords'])
        self.classes = 80 #if 'classes' not in param else int(param['classes'])
        self.side = side
        self.anchors = [10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0,198.0,373.0, 326.0] #if 'anchors' not in param else [float(a) for a in param['anchors'].split(',')]




def letterbox(img, size=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
    # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
    shape = img.shape[:2]  # current shape [height, width]
    w, h = size

    # Scale ratio (new / old)
    r = min(h / shape[0], w / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = w - new_unpad[0], h - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (w, h)
        ratio = w / shape[1], h / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border

    top2, bottom2, left2, right2 = 0, 0, 0, 0
    if img.shape[0] != h:
        top2 = (h - img.shape[0])//2
        bottom2 = top2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    elif img.shape[1] != w:
        left2 = (w - img.shape[1])//2
        right2 = left2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    return img


def scale_bbox(x, y, height, width, class_id, confidence, im_h, im_w, resized_im_h=640, resized_im_w=640):
    gain = min(resized_im_w / im_w, resized_im_h / im_h)  # gain  = old / new
    pad = (resized_im_w - im_w * gain) / 2, (resized_im_h - im_h * gain) / 2  # wh padding
    x = int((x - pad[0])/gain)
    y = int((y - pad[1])/gain)

    w = int(width/gain)
    h = int(height/gain)

    xmin = max(0, int(x - w / 2))
    ymin = max(0, int(y - h / 2))
    xmax = min(im_w, int(xmin + w))
    ymax = min(im_h, int(ymin + h))
    # Method item() used here to convert NumPy types to native types for compatibility with functions, which don't
    # support Numpy types (e.g., cv2.rectangle doesn't support int64 in color parameter)
    return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id.item(), confidence=confidence.item())


def entry_index(side, coord, classes, location, entry):
    side_power_2 = side ** 2
    n = location // side_power_2
    loc = location % side_power_2
    return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)


def parse_yolo_region(blob, resized_image_shape, original_im_shape, params, threshold):
    # ------------------------------------------ Validating output parameters ------------------------------------------    

    out_blob_n, out_blob_c, out_blob_h, out_blob_w = blob.shape
    predictions = 1.0/(1.0+np.exp(-blob)) 


    # ------------------------------------------ Extracting layer parameters -------------------------------------------
    orig_im_h, orig_im_w = original_im_shape
    resized_image_h, resized_image_w = resized_image_shape
    objects = list()

    side_square = params.side * params.side

    # ------------------------------------------- Parsing YOLO Region output -------------------------------------------
    bbox_size = int(out_blob_c/params.num) #4+1+num_classes
    index=0
    for row, col, n in np.ndindex(params.side, params.side, params.num):
        bbox = predictions[0, n*bbox_size:(n+1)*bbox_size, row, col]
        x, y, width, height, object_probability = bbox[:5]
        class_probabilities = bbox[5:]
        if object_probability < threshold:
            continue
        x = (2*x - 0.5 + col)*(resized_image_w/out_blob_w)
        y = (2*y - 0.5 + row)*(resized_image_h/out_blob_h)
        if int(resized_image_w/out_blob_w) == 8 & int(resized_image_h/out_blob_h) == 8: #80x80, 
            idx = 0
        elif int(resized_image_w/out_blob_w) == 16 & int(resized_image_h/out_blob_h) == 16: #40x40
            idx = 1
        elif int(resized_image_w/out_blob_w) == 32 & int(resized_image_h/out_blob_h) == 32: # 20x20
            idx = 2

        width = (2*width)**2* params.anchors[idx * 6 + 2 * n]
        height = (2*height)**2 * params.anchors[idx * 6 + 2 * n + 1]
        class_id = np.argmax(class_probabilities)
        confidence = object_probability
        objects.append(scale_bbox(x=x, y=y, height=height, width=width, class_id=class_id, confidence=confidence,im_h=orig_im_h, im_w=orig_im_w, resized_im_h=resized_image_h, resized_im_w=resized_image_w))
        if index >30:
            break
        index+=1
    return objects


def intersection_over_union(box_1, box_2):
    width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin'])
    height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin'])
    if width_of_overlap_area < 0 or height_of_overlap_area < 0:
        area_of_overlap = 0
    else:
        area_of_overlap = width_of_overlap_area * height_of_overlap_area
    box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin'])
    box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin'])
    area_of_union = box_1_area + box_2_area - area_of_overlap
    if area_of_union == 0:
        return 0
    return area_of_overlap / area_of_union


def main():
    args = build_argparser().parse_args()

    # ------------- 1. Plugin initialization for specified device and load extensions library if specified -------------
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, "CPU")
    # -------------------- 2. Reading the IR generated by the Model Optimizer (.xml and .bin files) --------------------
    model = args.model
    net = ie.read_network(model=model)

    # ---------------------------------------------- 4. Preparing inputs -----------------------------------------------
    input_blob = next(iter(net.input_info))

    #  Defaulf batch_size is 1
    net.batch_size = 1

    # Read and pre-process input images
    n, c, h, w = net.input_info[input_blob].input_data.shape

    # labels_map = [x.strip() for x in f]
    labels_map = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush']

    input_stream = 0 if args.input == "cam" else args.input

    is_async_mode = True
    cap = cv2.VideoCapture(input_stream)
    number_input_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    number_input_frames = 1 if number_input_frames != -1 and number_input_frames < 0 else number_input_frames

    wait_key_code = 1

    # Number of frames in picture is 1 and this will be read in cycle. Sync mode is default value for this case
    if number_input_frames != 1:
        ret, frame = cap.read()
    else:
        is_async_mode = False
        wait_key_code = 0

    # ----------------------------------------- 5. Loading model to the plugin -----------------------------------------
    exec_net = ie.load_network(network=net, num_requests=2, device_name=args.device)

    cur_request_id = 0
    next_request_id = 1
    render_time = 0
    parsing_time = 0

    # ----------------------------------------------- 6. Doing inference -----------------------------------------------
    initial_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    initial_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    origin_im_size = (initial_h,initial_w)
    while cap.isOpened():
        # Here is the first asynchronous point: in the Async mode, we capture frame to populate the NEXT infer request
        # in the regular mode, we capture frame to the CURRENT infer request

        if is_async_mode:
            ret, next_frame = cap.read()
        else:
            ret, frame = cap.read()

        if not ret:
            break

        if is_async_mode:
            request_id = next_request_id
            in_frame = letterbox(frame, (w, h))
        else:
            request_id = cur_request_id
            in_frame = letterbox(frame, (w, h))

        in_frame0 = in_frame
        # resize input_frame to network size
        in_frame = in_frame.transpose((2, 0, 1))  # Change data layout from HWC to CHW
        in_frame = in_frame.reshape((n, c, h, w))

        # Start inference
        start_time = time()
        exec_net.start_async(request_id=request_id, inputs={input_blob: in_frame})


        # Collecting object detection results
        objects = list()
        if exec_net.requests[cur_request_id].wait(-1) == 0:
            output = exec_net.requests[cur_request_id].output_blobs
            start_time = time()

            for layer_name, out_blob in output.items():
                layer_params = YoloParams(side=out_blob.buffer.shape[2])
                objects += parse_yolo_region(out_blob.buffer, in_frame.shape[2:],
                                             frame.shape[:-1], layer_params,
                                             args.prob_threshold)


            parsing_time = time() - start_time


        # Filtering overlapping boxes with respect to the --iou_threshold CLI parameter
        objects = sorted(objects, key=lambda obj : obj['confidence'], reverse=True)
        for i in range(len(objects)):
            if objects[i]['confidence'] == 0:
                continue
            for j in range(i + 1, len(objects)):
                if intersection_over_union(objects[i], objects[j]) > args.iou_threshold:
                    objects[j]['confidence'] = 0

        # Drawing objects with respect to the --prob_threshold CLI parameter
        objects = [obj for obj in objects if obj['confidence'] >= args.prob_threshold]




        for obj in objects:
            # Validation bbox of detected object
            if obj['xmax'] > origin_im_size[1] or obj['ymax'] > origin_im_size[0] or obj['xmin'] < 0 or obj['ymin'] < 0:
                continue
            color = (0,255,0)
            det_label = labels_map[obj['class_id']] if labels_map and len(labels_map) >= obj['class_id'] else \
                str(obj['class_id'])


            cv2.rectangle(frame, (obj['xmin'], obj['ymin']), (obj['xmax'], obj['ymax']), color, 2)
            cv2.putText(frame,
                        "#" + det_label + ' ' + str(round(obj['confidence'] * 100, 1)) + ' %',
                        (obj['xmin'], obj['ymin'] - 7), cv2.FONT_ITALIC, 1, color, 2)

        # Draw performance stats over frame
        async_mode_message = "Async mode: ON"if is_async_mode else "Async mode: OFF"

        cv2.putText(frame, async_mode_message, (10, int(origin_im_size[0] - 20)), cv2.FONT_ITALIC, 1,
                    (10, 10, 200), 2)

        fps_time = time() - start_time
        if fps_time !=0:
            fps = 1 / fps_time
            cv2.putText(frame, 'fps:'+str(round(fps,2)), (50, 50), cv2.FONT_ITALIC, 1, (0, 255, 0), 2)

        cv2.imshow("DetectionResults", frame)


        if is_async_mode:
            cur_request_id, next_request_id = next_request_id, cur_request_id
            frame = next_frame

        key = cv2.waitKey(wait_key_code)
        # ESC key
        if key == 27:
            break
        # Tab key
        if key == 9:
            exec_net.requests[cur_request_id].wait()
            is_async_mode = not is_async_mode
            log.info("Switched to {} mode".format("async" if is_async_mode else "sync"))

    cv2.destroyAllWindows()

if __name__ == '__main__':
    sys.exit(main() or 0)

三、总结

通过openvino加速,CPU没有GPU下,从原本的20帧左右提升到50多帧,效果还可以,就 是用自己的模型,训练出来的效果不怎么好。

使用树莓派等嵌入板子使用openvino效果还可以。

相关文章
|
2天前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
22 7
|
2天前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
15 6
|
5天前
|
人工智能 数据安全/隐私保护 UED
RAG让AI大模型更懂业务解决方案部署使用体验
根据指导文档,部署过程得到了详细步骤说明的支持,包括环境配置、依赖安装及代码示例,确保了部署顺利进行。建议优化知识库问题汇总,增加部署失败案例参考,以提升用户体验。整体解决方案阅读与部署体验良好,有助于大型语言模型在特定业务场景的应用,未来可加强行业适应性和用户隐私保护。
26 5
|
2天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
9 1
|
2天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
10 1
|
7天前
|
Serverless 数据安全/隐私保护 前端开发
大模型代码能力体验报告之贪吃蛇小游戏《一》:Claude.ai篇 - 生成、预览和快速部署的serverless一条龙
本文介绍了通过Claude.ai生成并优化Web版贪吃蛇游戏的过程,展示了其强大的代码生成功能及用户友好的界面设计。从初始版本的快速生成到根据用户反馈调整游戏速度,再到提供多种实用工具如文件管理、版本控制和一键部署,Claude.ai不仅是一个代码助手,更像是一个全面的serverless开发平台。文中还呼吁国内厂商关注此类技术的发展。
|
12天前
|
数据采集 人工智能 算法
《AI大模型助力客户对话分析》部署心得
该方案详细介绍了AI客服对话分析的实践原理和实施方法,涵盖从数据预处理到模型训练、预测的关键步骤。但技术细节和实施步骤的具体性不足,如模型训练算法、参数调优方法、数据预处理步骤等需要补充。部署体验中,环境配置和参数设置的指导不够明确,建议提供详细的环境配置指南和参数说明。示例代码可作为模板使用,但在函数计算部署中可能存在环境配置不匹配、依赖库冲突等问题。方案基本满足对话分析需求,但在模型泛化能力、实时分析、可视化界面及数据安全等方面仍有提升空间。
|
12天前
|
人工智能 弹性计算 自然语言处理
《触手可及,函数计算玩转 AI 大模型》解决方案体验与部署评测
在AI技术快速发展的背景下,大模型正推动各行业的智能化转型。企业为抓住机遇,纷纷寻求部署AI大模型以满足特定业务需求。阿里云函数计算凭借按量付费、卓越弹性和快速交付等优势,为企业提供了高效、安全的AI大模型部署方案。本文将详细介绍阿里云函数计算的技术解决方案及其在文生文、图像生成和语音生成等领域的应用实例,展示其在降低成本、提高效率和增强灵活性方面的显著优势。
|
13天前
|
人工智能 自然语言处理 搜索推荐
【通义】AI视界|微软Copilot Studio推出新功能,帮助企业更便捷地构建和部署AI代理
本文介绍了近期科技领域的五大重要动态:马斯克旗下xAI发布首个API,苹果内部研究显示ChatGPT比Siri准确率高25%,微软Copilot Studio推出新功能,霍尼韦尔与谷歌合作引入Gemini AI,浑水创始人建议买入科技七巨头股票。更多资讯请访问【通义】。
|
14天前
|
人工智能 Docker 容器
一、轻松部署的大模型开发平台dify.ai
一、轻松部署的大模型开发平台dify.ai
42 0

热门文章

最新文章

  • 1
    2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
    12
  • 2
    2024重生之回溯数据结构与算法系列学习(11)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
    6
  • 3
    2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    9
  • 4
    2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    10
  • 5
    2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    10
  • 6
    2024重生之回溯数据结构与算法系列学习(7)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    7
  • 7
    2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    7
  • 8
    23
    6
  • 9
    2024重生之回溯数据结构与算法系列学习之单双链表精题(4)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    9
  • 10
    2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    6