【揭秘Hadoop YARN背后的奥秘!】从零开始,带你深入了解YARN资源管理框架的核心架构与实战应用!

简介: 【8月更文挑战第24天】Hadoop YARN(Yet Another Resource Negotiator)是Hadoop生态系统中的资源管理器,为Hadoop集群上的应用提供统一的资源管理和调度框架。YARN通过ResourceManager、NodeManager和ApplicationMaster三大核心组件实现高效集群资源利用及多框架支持。本文剖析YARN架构及组件工作原理,并通过示例代码展示如何运行简单的MapReduce任务,帮助读者深入了解YARN机制及其在大数据处理中的应用价值。

Hadoop YARN(Yet Another Resource Negotiator)是 Hadoop 生态系统中的资源管理器,它为运行在 Hadoop 集群上的应用程序提供了一个统一的资源管理和调度框架。本文将深入探讨 YARN 的基础架构,分析其核心组件的工作原理,并通过示例代码展示如何使用 YARN 运行一个简单的 MapReduce 任务。

YARN 的设计目标是提高集群资源利用率,支持多种计算框架。在 YARN 架构中,主要包括 ResourceManager、NodeManager 和 ApplicationMaster 三个核心组件。

ResourceManager 是集群资源管理的核心,它负责集群资源的分配和调度。NodeManager 是每个节点上的代理,负责容器的生命周期管理,监控容器资源使用情况,并向 ResourceManager 报告。ApplicationMaster 是每个应用程序的管理器,它负责应用程序的生命周期管理,包括向 ResourceManager 申请资源、与 NodeManager 协调容器启动/停止等。

ResourceManager 的职责

ResourceManager 包含两个主要的组件:Scheduler 和 Applications Manager。Scheduler 负责集群资源的分配,它根据策略将资源分配给不同的应用程序。Applications Manager 负责接收来自客户端的作业提交请求,为每个作业启动 ApplicationMaster,并监控其生命周期。

NodeManager 的职责

NodeManager 是每个节点上的服务,它负责容器的启动、监控和关闭。NodeManager 与 ResourceManager 保持心跳通信,报告节点上的资源使用情况,并接收来自 ResourceManager 的指令。

ApplicationMaster 的职责

ApplicationMaster 是每个应用程序的管理器,它负责为应用程序申请资源,并与 NodeManager 协调容器的启动和停止。ApplicationMaster 还负责监控应用程序的状态,确保任务能够正常运行。

示例代码:运行 MapReduce 任务

以下是一个简单的 Java 示例,展示如何使用 YARN 运行一个 MapReduce 任务:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCount {
   

    public static class TokenizerMapper
            extends Mapper<Object, Text, Text, IntWritable> {
   

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
   
            String[] words = value.toString().split("\\s+");
            for (String w : words) {
   
                word.set(w);
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer
            extends Reducer<Text, IntWritable, Text, IntWritable> {
   
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context) throws IOException, InterruptedException {
   
            int sum = 0;
            for (IntWritable val : values) {
   
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
   
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

总结

YARN 作为 Hadoop 的下一代计算框架,为运行在 Hadoop 集群上的应用程序提供了一个灵活、高效的资源管理和调度框架。通过对 ResourceManager、NodeManager 和 ApplicationMaster 的深入分析,我们可以更好地理解 YARN 的工作原理,并利用 YARN 运行复杂的 MapReduce 任务。随着大数据技术的发展,YARN 已经成为处理大规模数据集的重要工具之一。

相关文章
|
20天前
|
数据采集 监控 前端开发
二级公立医院绩效考核系统源码,B/S架构,前后端分别基于Spring Boot和Avue框架
医院绩效管理系统通过与HIS系统的无缝对接,实现数据网络化采集、评价结果透明化管理及奖金分配自动化生成。系统涵盖科室和个人绩效考核、医疗质量考核、数据采集、绩效工资核算、收支核算、工作量统计、单项奖惩等功能,提升绩效评估的全面性、准确性和公正性。技术栈采用B/S架构,前后端分别基于Spring Boot和Avue框架。
|
4天前
|
存储 分布式计算 关系型数据库
架构/技术框架调研
本文介绍了微服务间事务处理、调用、大数据处理、分库分表、大文本存储及数据缓存的最优解决方案。重点讨论了Seata、Dubbo、Hadoop生态系统、MyCat、ShardingSphere、对象存储服务和Redis等技术,提供了详细的原理、应用场景和优缺点分析。
|
25天前
|
人工智能 前端开发 JavaScript
前端架构思考 :专注于多框架的并存可能并不是唯一的方向 — 探讨大模型时代前端的分层式微前端架构
随着前端技术的发展,微前端架构成为应对复杂大型应用的流行方案,允许多个团队使用不同技术栈并将其模块化集成。然而,这种设计在高交互性需求的应用中存在局限,如音视频处理、AI集成等。本文探讨了传统微前端架构的不足,并提出了一种新的分层式微前端架构,通过展示层与业务层的分离及基于功能的横向拆分,以更好地适应现代前端需求。
|
1月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
82 0
|
9天前
|
监控
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。
25 6
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
|
15天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
55 4
|
1月前
|
JSON 前端开发 Java
Spring Boot框架中的响应与分层解耦架构
在Spring Boot框架中,响应与分层解耦架构是两个核心概念,它们共同促进了应用程序的高效性、可维护性和可扩展性。
50 3
|
2月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
126 3
YARN(Hadoop操作系统)的架构
|
2月前
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
54 1
使用YARN命令管理Hadoop作业
|
3月前
|
资源调度 分布式计算 算法
【揭秘Yarn调度秘籍】打破资源分配的枷锁,Hadoop Yarn权重调度全攻略!
【8月更文挑战第24天】在大数据处理领域,Hadoop Yarn 是一种关键的作业调度与集群资源管理工具。它支持多种调度器以适应不同需求,默认采用FIFO调度器,但可通过引入基于权重的调度算法来提高资源利用率。该算法根据作业或用户的权重值决定资源分配比例,权重高的可获得更多计算资源,特别适合多用户共享环境。管理员需在Yarn配置文件中启用特定调度器(如CapacityScheduler),并通过设置队列权重来实现资源的动态调整。合理配置权重有助于避免资源浪费,确保集群高效运行,满足不同用户需求。
51 3