OSS&Tablestore 向量检索能力全新升级,重塑AI时代数据管理

本文涉及的产品
对象存储 OSS,20GB 3个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
对象存储 OSS,内容安全 1000次 1年
简介: 阿里云 OSS Indexing 发布了向量索引和检索能力。该功能除了可以对 OSS Meta 进行检索之外,还可以对多媒体数据元信息、用户自定义元数据以及向量语义进行检索。OSS Indexing 功能,是依托阿里云表格存储 TableStore 提供的索引存储和检索能力而构建的。表格存储针对成本、规模、召回率等挑战,发布了低成本、大规模、高性能、高召回率的向量检索服务,能以较低成本支持千亿规模数据的存储和检索。

众所周知,优质数据是 AI 大模型持续迭代的核心。根据 IDC 预测 2025 年全球数据量将达到 175ZB,在如此繁杂的数据资源中,如何精准地捕捉数据间的语义关系,提升信息检索的效率,成为了大模型的核心竞争力之一。因此,在 AI 生产链路中,向量检索技术通过推理应用实现数据价值,将不同模态的数据在同一空间中进行表达和检索,在自然语言处理、计算机视觉等应用领域起到了重要作用。

近日,阿里云成功举办了“AI驱动:数据管理的进化与创新 ”线上新品发布会。存储的本质是数据服务,其价值不止于把数据存下来本身,更在于其便捷的采集、精细的管理、高效的流动与使用。

  1. 在数据采集阶段,阿里云运用 OSS 跨区域复制、OSS 传输加速,保障海量非结构化数据高效、安全的传输和统一存储;
  2. 在数据预处理阶段,OSS图片处理、OSS数据索引、EBS弹性临时盘能够提升预处理效率,为训练提供高质量的数据集;
  3. 模型训练和推理阶段,CPFS 高性能并行文件存储,以及此次全新推出的的OSS Connector for AI/ML能够在大规模、容器化部署的生产环境中,提升模型训练的效率,降低数据集加载时间;新版本 OSSFS、OSS 加速器可以在推理阶段,加速中小模型的快速拉取;
  4. 在 AI 应用阶段,阿里云通过OSS 数据索引、OSS 内容安全、Tablestore 向量检索、IMM 智能处理等能力的组合,致力于为客户提供基于现有数据和环境,在云上快速搭建 AI 应用,高效验证业务创新思路的能力。

当前,AI 企业希望面向多模态数据具备开箱即用的数据处理能力,并且一份数据能够对接多种计算引擎和 AI 框架,提升 AI 推理实施的便利性 、将传统的单模态数据处理平滑升级为 AI 多模态数据处理。这要求存储系统的检索能力需要新增向量检索的功能,并且具备开放生态、高性能、低成本等特性。然而,当前多样的向量数据库还存在一些挑战,尤其是在向量检索最核心的成本、规模、召回率三个方面。

阿里云 OSS Indexing 发布了向量索引和检索能力。该功能除了可以对 OSS Meta 进行检索之外,还可以对多媒体数据元信息、用户自定义元数据以及向量语义进行检索。OSS Indexing 功能,是依托阿里云表格存储 TableStore 提供的索引存储和检索能力而构建的。阿里云表格存储是一款 Serverless 分布式结构化数据存储服务,依赖于新能力的升级,Tablestore 支持了 RAG 应用及传统的多模态搜索场景,同时也支持了 OSS indexing 的元数据服务。本次发布会上,表格存储针对上述在向量检索领域遇到的成本、规模、召回率等挑战,发布了低成本、大规模、高性能、高召回率的向量检索服务,能以较低成本支持千亿规模数据的存储和检索。

通过gist 数据集做对照测试得出:相同资源消耗情况下,Tablestore索引构建写入完成时间,比某社区开源向量引擎降低 65%,查询时延约仅为开源引攀的九分之一。同时,更低检索时延(Tablestore 71ms/某开源向量引擎 613ms),内存资源消耗仅为开源向量引擎的十分之一。

除此之外,本次发布会还重磅更新了OSS数据湖的生态接入方式,包括高性能的 OSS Connector for AI/ML、新版本OSSFS等。同时,OSS在数据安全、性能和数据管理上针对 AI 负载进行了进一步优化,当前数据处理和检索能力演进主要聚焦在简单易用、更强的兼容性、低成本、AI serverless等方面,即提供开箱即用的 AI 能力。

此次阿里云表格存储向量检索能力的全新升级,推动了智能推荐、内容检索、RAG 和知识库等应用的广泛普及,重塑了 AI 时代海量数据管理的方式。“面对诸多挑战与机遇,阿里云存储将持续进化创新,在 AI 数据 pipeline 全流程中,为客户提供更丰富多样的数据管理能力。”阿里云智能资深产品专家彭亚雄(崆闻)阐述到。

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
16天前
|
存储 人工智能 开发工具
AI场景下的对象存储OSS数据管理实践
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
75 10
|
16天前
|
弹性计算 人工智能 数据管理
AI场景下的对象存储OSS数据管理实践
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
72 10
|
2月前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
5月前
|
存储 人工智能 NoSQL
OSS&Tablestore 向量检索能力全新升级,重塑AI时代数据管理
近日,阿里云成功举办了“AI驱动:数据管理的进化与创新 ”线上新品发布会。发布会上,阿里云存储产品向量检索能力全新升级,重塑AI时代数据管理。
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
140 97
|
13天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
39 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
1天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
31 23
|
12天前
|
人工智能 前端开发 Java
Spring AI Alibaba + 通义千问,开发AI应用如此简单!!!
本文介绍了如何使用Spring AI Alibaba开发一个简单的AI对话应用。通过引入`spring-ai-alibaba-starter`依赖和配置API密钥,结合Spring Boot项目,只需几行代码即可实现与AI模型的交互。具体步骤包括创建Spring Boot项目、编写Controller处理对话请求以及前端页面展示对话内容。此外,文章还介绍了如何通过添加对话记忆功能,使AI能够理解上下文并进行连贯对话。最后,总结了Spring AI为Java开发者带来的便利,简化了AI应用的开发流程。
203 0
|
20天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
107 31

相关产品

  • 对象存储