Python多进程日志以及分布式日志的实现方式

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: python日志模块logging支持多线程,但是在多进程下写入日志文件容易出现下面的问题:PermissionError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。也就是日志文件被占用的情况,原因是多个进程的文件handler对日志文件进行操作产生的。

python日志模块logging支持多线程,但是在多进程下写入日志文件容易出现下面的问题:


PermissionError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。


也就是日志文件被占用的情况,原因是多个进程的文件handler对日志文件进行操作产生的。


这个问题经常在TimedRotatingFileHandler、RotatingFileHandler中出现。

解决办法

题主在网上搜集了各种解决上面问题的办法,基本以下面三个方向为主:

  • 安装第三方库提供的handler
  • 重写filehandler加全局锁
  • 使用队列将消息传递


但是三种方法各有小缺陷:

  • 第三方库很久无人维护,且支持的功能比较单一,无法满足生产环境的需求。
  • 轮转日志的时候由于全局锁的存在,其他子进程无法记录日志,有丢失日志的风险。
  • 使用多进程消息队列的缺点在于使用困难,如果是多模块编程,需要将全局队列传来传去,在大型项目中显得很麻烦。


经过对官网的研究 ,题主无意中找到了一种非常方便且高效的方法,并且经过一定的修改使这种方法可用于分布式日志,且支持多语言日志的处理。


唯一的不足是需要新学习一个zmq通信协议,但是这并不是问题,如果只是想要一个解决方案并立即投入使用,只需要按照下面的方法编写,无需关注zmq的相关知识。

基于zmq的分布式日志

实现思路

  • 通过zmq的多对一通信,将多个地方的日志发送到一个地方集中处理,从而实现分布式日志。
  • 这个方法不仅可以解决python分布日志的问题,还可以很好的兼容其他语言,比如项目中还有C、java,那么可以将它们中的日志也发送过来,一并处理。


看到这很多人可能明白了,这个方法类似官网提供的SocketHandler,但本方法其实是基于QueueHandler实现的,有利于发挥zmq易用性、可插拔、并发性能好的优点。

代码实现

首先是集中处理日志的程序,也就是上面所说"多对一"中的一。

import zmq
import logging
from logging import handlers
class ZeroMQSocketListener(handlers.QueueListener):
    def __init__(self, uri="tcp://127.0.0.1:5555", *handlers,**kwargs):
        self.respect_handler_level = True     # handler日志等级启用,允许对handler设置setLevel,False则忽视级别
        self.ctx = kwargs.get('ctx') or zmq.Context()
        socket = self.ctx.socket(zmq.SUB)
        socket.bind(uri)
        socket.setsockopt_string(zmq.SUBSCRIBE, '')     # 订阅所有主题
        super().__init__(socket, *handlers, respect_handler_level=self.respect_handler_level)
    def dequeue(self,block):
        msg = self.queue.recv_json()
        # print('111',msg)    # 测试用
        return logging.makeLogRecord(msg)
def main_logger():
    # 日志集中处理区,在主程序中调用一次
    # handlers配置区,filter可选
    formatter = logging.Formatter("%(name)s - %(asctime)s - %(levelname)s - %(module)s - %(funcName)s - %(message)s")
    console = logging.StreamHandler()
    console.setLevel(logging.ERROR)
    ch = handlers.TimedRotatingFileHandler(r'logs\face.log',when='M',
                                           # backupCount=180,
                                           encoding='utf-8')
    ch.setLevel(logging.INFO)
    ch.setFormatter(formatter)  # add formatter to ch
    # 设置监听的端口,并传递handlers
    loggerListener = ZeroMQSocketListener("tcp://127.0.0.1:5555",*(ch,console))
    loggerListener.start()   # 开启一个子线程处理记录器监听
# 主进程调用一次,非阻塞
main_logger()


自此,日志集中处理就结束了,是不是很简单,而且需要注意,我们这里不需要用到root logger,因为ZeroMQSocketListener会自动调用各种handlers将日志内容进行处理,想当于替代了logger的工作,所以也就没必要声明一个logger出来了。


更新:

这里的main_logger()是非阻塞,也就是下面还可以写其他代码,但是如果什么代码都没有,那么主进程就会直接退出,日志就收不到了。


如果接下来不需要做其他工作,那么请在main_logger()下方使用while True:time.sleep(0.5) 将主进程阻塞。


  • 需要重点关注通信地址"tcp://127.0.0.1:5555",因为其他地方的日志都会发送到这里来。


接下来是子进程中或者是你想记录日志的任何地方,比如在其他同事的电脑里


  • subprocess.py
import logging,zmq
from logging import handlers
# 我们需要的handler
class ZeroMQSocketHandler(handlers.QueueHandler):
    def __init__(self, uri="tcp://127.0.0.1:5555", socktype=zmq.PUB, ctx=None):
        self.ctx = ctx or zmq.Context()
        socket = self.ctx.socket(socktype)
        socket.connect(uri)
        super().__init__(socket)
    def enqueue(self, record):
        self.queue.send_json(record.__dict__)
    def close(self):
        self.queue.close()
# 创建远端日志
rmtlogger = logging.getLogger('sub_root_name')    ##
rmtlogger.setLevel(logging.INFO)     # 建议设置一下,有时候默认是WARNING级别
rmtlogger.propagate=False    # 不允许传递,日志传递到这里就发送到主进程中
# 配置handler
zmqhandler = ZeroMQSocketHandler()
zmqhandler.setLevel(logging.INFO)
rmtlogger.addHandler(zmqhandler)
# if you have submodule
# import submodule 
# 记录日志
rmtlogger.info("这是一条遥远的日志")


  • 如果是多进程环境下,您大可直接将上面的代码直接开启到多个子进程中,并不会出现网络问题。


logger可以通过python日志的name系统进行传递,也就是说如果子进程中还有其他模块,可以通过日志传递系统将其他模块产生的日志传递过来,最后一并发送给监听器,就像下面:


  • submodule.py


# subprocess.py的子模块,如需测试注意调用
import logging
subMolduleLogger = logging.getLogger(f'sub_root_name.modulename')
subMolduleLogger.info("这是一条子模块日志")
# 这部分内容需要logging基础知识


  • 上面这条日志会传递给rmtlogger,通过rmtlogger发送到主进程。


在主进程中,设置了logging.Formatter对象,可以将产生日志的名字打印出来,用于区分日志产生的位置。

多语言支持

由于zmq本身就支持多语言,比如你使用c语言或其他语言,只需要在代码中使用zmq将日志通过json发送过来。


python日志可以通过dict方法重建logger对象,具体可以打印上面代码中ZeroMQSocketListener.dequeue中的msg进行摸索,实现起来还是比较简单的。

总结

本篇所提供的多进程日志解决方法的目的是尽可能少做配置和修改,保留原有编程习惯的同时兼顾了代码的易用性。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
18天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
162 73
|
13天前
|
人工智能 分布式计算 数据处理
云产品评测:MaxFrame — 分布式Python计算服务的最佳实践与体验
阿里云推出的MaxFrame是一款高性能分布式计算平台,专为大规模数据处理和AI应用设计。它提供了强大的Python编程接口,支持分布式Pandas操作,显著提升数据处理速度(3-5倍)。MaxFrame在大语言模型数据处理中表现出色,具备高效内存管理和任务调度能力。然而,在开通流程、API文档及功能集成度方面仍有改进空间。总体而言,MaxFrame在易用性和计算效率上具有明显优势,但在开放性和社区支持方面有待加强。
44 9
|
14天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
49 2
|
15天前
|
人工智能 分布式计算 数据处理
云产品评测:分布式Python计算服务MaxFrame
云产品评测:分布式Python计算服务MaxFrame
52 3
|
1月前
|
存储 运维 数据可视化
如何为微服务实现分布式日志记录
如何为微服务实现分布式日志记录
60 1
|
2月前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录
|
2月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
2月前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
104 1
|
3月前
|
Python
python读写操作excel日志
主要是读写操作,创建表格
69 2
|
3月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。