神龙大数据加速引擎MRACC问题之RDMA技术帮助大数据分布式计算优化如何解决

简介: 神龙大数据加速引擎MRACC问题之RDMA技术帮助大数据分布式计算优化如何解决

问题一:MRACC-Spark在网络和存储方面做了哪些优化?


MRACC-Spark在网络和存储方面做了哪些优化?


参考回答:

MRACC-Spark在网络和存储方面进行了软硬件加速优化。在网络方面,使用eRDMA进行网络加速,降低了shuffle阶段的数据交换延时,提升了CPU利用率。在存储方面,结合云上架构优势,采用缓存、文件裁剪、索引等优化手段,并尝试将压缩等运算卸载到异构器件,提升了整体性能。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666807



问题二:Spark SQL在MRACC中有哪些特定的优化措施?


Spark SQL在MRACC中有哪些特定的优化措施?


参考回答:

在MRACC中,Spark SQL进行了多项优化,包括但不限于:支持subquery的动态数据裁剪以减少参与计算的数据量;在物理计划执行阶段支持window topn排序以提升包含limit的SQL语句性能;支持parquet rowgroup裁剪、bloom filter join等高级特性;使用遗传算法搜索解决join table过多导致的cbo搜索开销暴增问题;支持去重下推、join外键消除、完整性约束等功能,并结合deltalake支持数据的增删改操作。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666808



问题三:MRACC-Spark的SQL引擎优化主要体现在哪些方面?


MRACC-Spark的SQL引擎优化主要体现在哪些方面?


参考回答:

MRACC-Spark的SQL引擎优化主要体现在anlyzer、optimizer、planner、Query execution等阶段。其中,针对AE机制进行了扩展,支持了subquery的动态数据裁剪;在物理计划执行阶段,引入了window topn排序、parquet rowgroup裁剪、bloom filter join等特性;同时,针对CBO机制在join table过多时导致的开销问题,引入了遗传算法搜索来优化。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666809



问题四:阿里云在2021年云栖大会上发布了什么重要架构,并提供了什么独特的加速能力?


阿里云在2021年云栖大会上发布了什么重要架构,并提供了什么独特的加速能力?


参考回答:

阿里云在2021年杭州云栖大会上发布了第四代神龙架构,提供了业界首个大规模弹性RDMA加速能力,这种能力通过RDMA技术实现了低时延、高性能的网络传输,减少了CPU开销。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666810


问题五:RDMA技术的主要优势是什么?它如何帮助大数据分布式计算优化?


RDMA技术的主要优势是什么?它如何帮助大数据分布式计算优化?


参考回答:

RDMA技术的主要优势在于提供直接内存访问的方式,数据传输bypass Kernel,减少了CPU的开销,并提供了低时延的高性能网络。在大数据分布式计算中,它特别优化了shuffle过程,通过将shuffle数据交换变为memory-network-memory的模式,充分利用了RDMA用户态内存直接交互、低延时、低CPU消耗的特点,从而显著提升了性能。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666812

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
1145 4
|
11月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
5月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
546 4
|
4月前
|
机器学习/深度学习 监控 PyTorch
68_分布式训练技术:DDP与Horovod
随着大型语言模型(LLM)规模的不断扩大,从早期的BERT(数亿参数)到如今的GPT-4(万亿级参数),单卡训练已经成为不可能完成的任务。分布式训练技术应运而生,成为大模型开发的核心基础设施。2025年,分布式训练技术已经发展到相当成熟的阶段,各种优化策略和框架不断涌现,为大模型训练提供了强大的支持。
|
5月前
|
JSON 监控 Java
Elasticsearch 分布式搜索与分析引擎技术详解与实践指南
本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
416 0
|
9月前
|
安全 JavaScript 前端开发
HarmonyOS NEXT~HarmonyOS 语言仓颉:下一代分布式开发语言的技术解析与应用实践
HarmonyOS语言仓颉是华为专为HarmonyOS生态系统设计的新型编程语言,旨在解决分布式环境下的开发挑战。它以“编码创造”为理念,具备分布式原生、高性能与高效率、安全可靠三大核心特性。仓颉语言通过内置分布式能力简化跨设备开发,提供统一的编程模型和开发体验。文章从语言基础、关键特性、开发实践及未来展望四个方面剖析其技术优势,助力开发者掌握这一新兴工具,构建全场景分布式应用。
898 35
|
10月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
人工智能 缓存 调度
技术改变AI发展:RDMA能优化吗?GDR性能提升方案(GPU底层技术系列二)
随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。GPUDirect RDMA 是 Kepler 级 GPU 和 CUDA 5.0 中引入的一项技术,可以让使用pcie标准的gpu和第三方设备进行直接的数据交换,而不涉及CPU。
139441 6
|
Linux Anolis 异构计算
关于远程直接内存访问技术 RDMA 的高性能架构设计介绍
本文介绍 RDMA 技术的基本原理及交流在工程上的设计思路。