单元测试问题之JCode5插件在项目中的实际应用效果如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 单元测试问题之JCode5插件在项目中的实际应用效果如何解决

问题一:JCode5插件在项目中的实际应用效果如何?


JCode5插件在项目中的实际应用效果如何?


参考回答:

JCode5插件在我们的项目中已经得到了实际应用,并成功增加了135个测试用例(除去mock的单模块达到70%的覆盖率)。这些测试用例的执行速度相比传统的集成测试(如使用Pandora、Spring等框架)有了显著提升。同时,代码覆盖率也相对可观,有效提高了单元测试的质量和效率。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667004



问题二:Alluxio数据编排平台与阿里云云原生数据仓库AnalyticDB的合作主要解决了什么问题?


Alluxio数据编排平台与阿里云云原生数据仓库AnalyticDB的合作主要解决了什么问题?


参考回答:

Alluxio数据编排平台与阿里云云原生数据仓库AnalyticDB的合作主要解决了存储计算分离场景下从异构数据源读取数据带来的性能损耗问题。通过技术合作,实现了存储分层服务化,减少了从远端读取数据的延时和IO限制,从而提高了查询性能和吞吐量。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667005



问题三:Alluxio数据编排技术产品基于什么架构?这种架构有何优势?


Alluxio数据编排技术产品基于什么架构?这种架构有何优势?


参考回答:

Alluxio数据编排技术产品基于存储计算分离的架构。这种架构的优势包括允许独立扩展计算和存储、提高资源利用率、提高业务灵活性等。特别是借助云上的基础设施,存储可以选择更为便宜的对象存储OSS以及其它混合存储,计算资源可以按需付费和弹性扩缩容,从而更好地发挥云计算的成本优势和灵活性。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667006



问题四:阿里云云原生数据仓库AnalyticDB与Alluxio合作后,在哪些方面取得了显著提升?


阿里云云原生数据仓库AnalyticDB与Alluxio合作后,在哪些方面取得了显著提升?


参考回答:

阿里云云原生数据仓库AnalyticDB与Alluxio合作后,在查询性能上取得了显著提升。经TPC-H 1TB数据测试,查询性能普遍提升1倍以上,有效支持了对用户存储在OSS、HDFS等介质上的各种文件格式进行Adhoc查询、BI分析、轻量级ETL等数据分析工作。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667007


问题五:快手内部使用Flink SQL的情况如何?


快手内部使用Flink SQL的情况如何?


参考回答:

经过一年多的推广,快手内部用户对Flink SQL的认可度逐渐提高。今年新增的Flink作业中,SQL作业占比达到了60%,与去年相比提升了一倍,峰值吞吐达到了6亿条/秒。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/667008

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
17天前
|
敏捷开发 测试技术 持续交付
探索自动化测试在敏捷开发中的应用与挑战
本文深入探讨了自动化测试在现代软件开发流程,特别是敏捷开发环境中的重要作用和面临的挑战。通过分析自动化测试的基本原理、实施策略以及在实际项目中的应用案例,揭示了其在提高软件质量和加速产品交付方面的巨大潜力。同时,文章也指出了自动化测试实施过程中可能遇到的技术难题、成本考量及团队协作问题,并提出了相应的解决策略,为软件开发团队提供了有价值的参考和指导。
|
22天前
|
编解码 测试技术 开发工具
测试 iPhone 应用在不同屏幕尺寸和分辨率下的响应式效果
【10月更文挑战第23天】测试 iPhone 应用在不同屏幕尺寸和分辨率下的响应式效果是确保应用质量和用户体验的重要环节。通过手动测试、自动化测试、视觉效果评估、性能测试、用户体验测试等多种方法的综合运用,能够全面地发现应用在响应式效果方面存在的问题,并及时进行解决和优化。同时,持续的测试和优化也是不断提升应用质量和用户满意度的关键。
|
14天前
|
网络协议 关系型数据库 应用服务中间件
【项目场景】请求数据时测试环境比生产环境多花了1秒是怎么回事?
这是一位粉丝(谢同学)给V哥的留言,描述了他在优化系统查询时遇到的问题:测试环境优化达标,但生产环境响应时间多出1秒。通过抓包分析,发现MySQL请求和响应之间存在500毫秒的延迟,怀疑是网络传输开销。V哥给出了以下优化建议:
|
19天前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
37 2
|
19天前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
20 1
|
20天前
|
前端开发 JavaScript 数据可视化
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第26天】前端自动化测试在现代软件开发中至关重要,Jest和Cypress分别是单元测试和端到端测试的流行工具。本文通过解答一系列问题,介绍Jest与Cypress的实战应用与最佳实践,帮助开发者提高测试效率和代码质量。
30 2
|
1月前
|
监控 测试技术 持续交付
掌握跨平台测试策略:确保应用的无缝体验
【10月更文挑战第14天】在多元化设备和操作系统的今天,跨平台测试策略成为确保应用质量和性能的关键。本文探讨了跨平台测试的重要性、核心优势及实施步骤,涵盖Web、移动和桌面应用的测试方法,帮助开发者提高应用的无缝体验。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在软件测试中的创新应用与实践###
本文旨在探讨人工智能(AI)技术如何革新软件测试领域,提升测试效率、质量与覆盖范围。通过深入分析AI驱动的自动化测试工具、智能化缺陷预测模型及持续集成/持续部署(CI/CD)流程优化等关键方面,本研究揭示了AI技术在解决传统软件测试痛点中的潜力与价值。文章首先概述了软件测试的重要性和当前面临的挑战,随后详细介绍了AI技术在测试用例生成、执行、结果分析及维护中的应用实例,并展望了未来AI与软件测试深度融合的趋势,强调了技术伦理与质量控制的重要性。本文为软件开发与测试团队提供了关于如何有效利用AI技术提升测试效能的实践指南。 ###
|
1月前
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。
|
17天前
|
NoSQL 测试技术 Go
自动化测试在 Go 开源库中的应用与实践
本文介绍了 Go 语言的自动化测试及其在 `go mongox` 库中的实践。Go 语言通过 `testing` 库和 `go test` 命令提供了简洁高效的测试框架,支持单元测试、集成测试和基准测试。`go mongox` 库通过单元测试和集成测试确保与 MongoDB 交互的正确性和稳定性,使用 Docker Compose 快速搭建测试环境。文章还探讨了表驱动测试、覆盖率检查和 Mock 工具的使用,强调了自动化测试在开源库中的重要性。

热门文章

最新文章