变分推断和贝叶斯方法

简介: 变分推断和贝叶斯方法

变分推断(Variational Inference, VI)是一种在贝叶斯统计中用于近似复杂后验分布的技术。它通过优化一个简单分布(变分分布),使其尽可能接近真实的后验分布,从而克服了传统贝叶斯推断在大规模或复杂模型中的计算难题 。

变分推断的核心是变分原理,该原理将后验分布与变分分布之间的Kullback-Leibler (KL) 散度转化为一个优化问题。目标是最大化证据下界(Evidence Lower Bound, ELBO),从而找到最优的变分分布 。

变分推断的基本流程包括以下步骤:

  1. 选择一个变分族,如高斯分布或指数族分布,这些分布应具有易于优化的特性。
  2. 构建ELBO函数,包含观测数据对数似然的期望和变分分布与先验分布之间的KL散度。
  3. 使用梯度上升或其他优化算法最大化ELBO,更新变分参数。
  4. 最终,最优变分分布被视为真实后验分布的近似,用于后续的推断和决策 。

贝叶斯方法是一种基于贝叶斯定理的概率推理框架。贝叶斯定理是概率论中的一个重要定理,它提供了一种计算条件概率的方法,特别是已知事件发生的条件下另一事件发生的概率。贝叶斯定理的公式为:
[ P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} ]
其中,( P(A|B) ) 是在事件B发生的条件下事件A发生的后验概率,( P(B|A) ) 是在事件A发生的条件下事件B发生的似然概率,( P(A) ) 是事件A的先验概率,而 ( P(B) ) 是事件B发生的边缘概率 。

贝叶斯方法在数据分析、模式识别、统计决策以及人工智能等领域有广泛应用。通过结合先验知识和新的证据,贝叶斯方法能够不断更新对假设的信念,从而进行概率推断和决策 。

相关文章
|
存储
【期末计算机组成原理速成】第四章:输入输出系统
【期末计算机组成原理速成】第四章:输入输出系统
470 0
|
Java Spring 容器
一文带你深入理解SpringBean生命周期之Aware详解
一文带你深入理解SpringBean生命周期之Aware详解
2265 2
一文带你深入理解SpringBean生命周期之Aware详解
|
2月前
|
人工智能 自然语言处理 算法
数字人|数字人企业新榜单与选择指南
数字人企业正以技术重塑人机交互,像衍科技、灵动视界、幻界智能三者分别以全栈技术、场景落地与AIGC生态引领行业。从虚拟主播到数字文博,数字人已渗透金融、医疗、文化等领域,推动虚拟与现实深度融合,开启一场技术与人性的深度对话。
|
9月前
|
机器学习/深度学习 人工智能 JSON
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
Resume Matcher 是一款开源AI简历优化工具,通过解析简历和职位描述,提取关键词并计算文本相似性,帮助求职者优化简历内容,提升通过自动化筛选系统(ATS)的概率,增加面试机会。
1192 18
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
|
9月前
|
SQL JSON NoSQL
esProc SPL vs DuckDB:多源数据处理谁更胜一筹?
DuckDB 和 esProc SPL 均支持多数据源处理,但在功能和灵活性上存在差异。DuckDB 支持常见文件格式(如 CSV、Parquet)、云存储及部分关系型数据库,依赖专用连接器,扩展性有限;esProc 数据源支持更广泛,涵盖多种本地文件、数据库(关系型与 NoSQL)、云存储及远程数据源,使用 Native 接口封装,扩展简便,适合多数据源混合计算。 在数据处理方面,DuckDB 对 CSV 和 Parquet 文件支持成熟,复杂计算需借助 Python,存在体系割裂;esProc 提供 双语法,尤其 SPL 在复杂计算和 JSON 多层结构处理上表现更直观高效。
|
存储 弹性计算 固态存储
阿里云服务器CPU内存配置详细指南,如何选择合适云服务器配置?
阿里云服务器配置选择涉及CPU、内存、公网带宽和磁盘。个人开发者或中小企业推荐使用轻量应用服务器或ECS经济型e实例,如2核2G3M配置,适合低流量网站。企业用户则应选择企业级独享型ECS,如通用算力型u1、计算型c7或通用型g7,至少2核4G配置,公网带宽建议5M,系统盘可选SSD或ESSD云盘。选择时考虑实际应用需求和性能稳定性。
2159 6
|
PyTorch 算法框架/工具
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
本文介绍了PyTorch中的F.softmax()和F.log_softmax()函数的语法、参数和使用示例,解释了它们在进行归一化处理时的作用和区别。
1352 1
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
|
自然语言处理 算法 BI
Baum-Welch算法
Baum-Welch算法
|
机器学习/深度学习 存储 算法
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
本文介绍了一种名为"Synaptic Intelligence"(SI)的持续学习方法,通过模拟生物神经网络的智能突触机制,解决了人工神经网络在学习新任务时的灾难性遗忘问题,并保持了计算效率。
826 1
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
|
机器学习/深度学习 存储 人工智能
【博士每天一篇文献-算法】Memory aware synapses_ Learning what (not) to forget
本文介绍了一种名为“记忆感知突触”(Memory Aware Synapses, MAS)的终身学习方法,该方法通过无监督在线评估神经网络参数的重要性,并在新任务学习时对重要参数的更改进行惩罚,有效防止了旧任务知识的覆盖,实现了内存效率和性能提升,同时具有灵活性和通用性。
360 1