变分推断和贝叶斯方法

简介: 变分推断和贝叶斯方法

变分推断(Variational Inference, VI)是一种在贝叶斯统计中用于近似复杂后验分布的技术。它通过优化一个简单分布(变分分布),使其尽可能接近真实的后验分布,从而克服了传统贝叶斯推断在大规模或复杂模型中的计算难题 。

变分推断的核心是变分原理,该原理将后验分布与变分分布之间的Kullback-Leibler (KL) 散度转化为一个优化问题。目标是最大化证据下界(Evidence Lower Bound, ELBO),从而找到最优的变分分布 。

变分推断的基本流程包括以下步骤:

  1. 选择一个变分族,如高斯分布或指数族分布,这些分布应具有易于优化的特性。
  2. 构建ELBO函数,包含观测数据对数似然的期望和变分分布与先验分布之间的KL散度。
  3. 使用梯度上升或其他优化算法最大化ELBO,更新变分参数。
  4. 最终,最优变分分布被视为真实后验分布的近似,用于后续的推断和决策 。

贝叶斯方法是一种基于贝叶斯定理的概率推理框架。贝叶斯定理是概率论中的一个重要定理,它提供了一种计算条件概率的方法,特别是已知事件发生的条件下另一事件发生的概率。贝叶斯定理的公式为:
[ P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} ]
其中,( P(A|B) ) 是在事件B发生的条件下事件A发生的后验概率,( P(B|A) ) 是在事件A发生的条件下事件B发生的似然概率,( P(A) ) 是事件A的先验概率,而 ( P(B) ) 是事件B发生的边缘概率 。

贝叶斯方法在数据分析、模式识别、统计决策以及人工智能等领域有广泛应用。通过结合先验知识和新的证据,贝叶斯方法能够不断更新对假设的信念,从而进行概率推断和决策 。

相关文章
【期末计算机组成原理速成】第四章:输入输出系统
【期末计算机组成原理速成】第四章:输入输出系统
350 0
美团面试:MySQL为什么 不用 Docker部署?
45岁老架构师尼恩在读者交流群中分享了关于“MySQL为什么不推荐使用Docker部署”的深入分析。通过系统化的梳理,尼恩帮助读者理解为何大型MySQL数据库通常不使用Docker部署,主要涉及性能、管理复杂度和稳定性等方面的考量。文章详细解释了有状态容器的特点、Docker的资源隔离问题以及磁盘IO性能损耗,并提供了小型MySQL使用Docker的最佳实践。此外,尼恩还介绍了Share Nothing架构的优势及其应用场景,强调了配置管理和数据持久化的挑战。最后,尼恩建议读者参考《尼恩Java面试宝典PDF》以提升技术能力,更好地应对面试中的难题。
YOLOv11改进策略【Head】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进检测头, 优化模型(独家改进)
YOLOv11改进策略【Head】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进检测头, 优化模型(独家改进)
237 10
阿里云服务器CPU内存配置详细指南,如何选择合适云服务器配置?
阿里云服务器配置选择涉及CPU、内存、公网带宽和磁盘。个人开发者或中小企业推荐使用轻量应用服务器或ECS经济型e实例,如2核2G3M配置,适合低流量网站。企业用户则应选择企业级独享型ECS,如通用算力型u1、计算型c7或通用型g7,至少2核4G配置,公网带宽建议5M,系统盘可选SSD或ESSD云盘。选择时考虑实际应用需求和性能稳定性。
1700 6
【传知代码】BERT论文解读及情感分类实战-论文复现
本文介绍了BERT模型的架构和技术细节,包括双向编码器、预训练任务(掩码语言模型和下一句预测)以及模型微调。文章还提供了使用BERT在IMDB数据集上进行情感分类的实战,包括数据集处理、模型训练和评估,测试集准确率超过93%。BERT是基于Transformer的预训练模型,适用于多种NLP任务。在实践中,BERT模型加载预训练权重,对输入数据进行预处理,然后通过微调适应情感分类任务。
840 0
【传知代码】BERT论文解读及情感分类实战-论文复现
SpringBoot - 整合MyBatis配置版(XML)并开启事务
SpringBoot - 整合MyBatis配置版(XML)并开启事务
761 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问