早停法(Early Stopping)

简介: 早停法(Early Stopping)

早停法(Early Stopping)是一种常用的正则化技术,用于防止模型在训练过程中出现过拟合现象。这种方法特别适用于机器学习和深度学习中的模型训练。以下是早停法的工作原理和实现步骤:

工作原理:

  • 过拟合检测:早停法通过监控模型在验证集(或开发集)上的性能来检测过拟合。如果模型开始在训练集上表现得很好,但在验证集上的性能停止提升或下降,这可能是过拟合的迹象。

实现步骤:

  1. 初始化参数

    • 设置一个patience参数,这是模型在性能不再提升之前可以容忍的迭代次数。
  2. 训练与验证

    • 在每个训练周期(epoch)结束时,评估模型在验证集上的性能。
  3. 性能比较

    • 将当前周期的验证集性能与最佳性能(通常是最低的损失或最高的准确率)进行比较。
  4. 更新最佳性能

    • 如果当前周期的性能更好,更新最佳性能记录,并重置patience计数器。
  5. 早停条件

    • 如果当前周期的性能没有改善,增加patience计数器。如果patience达到预设值,停止训练。
  6. 模型选择

    • 一旦训练停止,选择在验证集上表现最佳的模型参数,而不是最后周期的模型。

优点:

  • 防止过拟合:通过在验证集上监控性能,早停法有助于防止模型过度适应训练数据。
  • 节省时间:一旦模型性能不再提升,就可以停止训练,节省计算资源和时间。
  • 提高模型泛化能力:选择在验证集上表现最佳的模型,有助于提高模型在未见数据上的泛化能力。

注意事项:

  • 选择合适的patiencepatience值应该根据具体任务和数据集进行调整。较小的值可能会导致过早停止,而较大的值可能会导致更长时间的训练。
  • 与其他正则化方法结合使用:早停法可以与权重衰减、Dropout等其他正则化技术一起使用,以进一步提高模型的泛化能力。
  • 使用交叉验证:在某些情况下,使用交叉验证来评估早停法的效果可能更准确,因为它可以提供更稳健的性能估计。

早停法是一种简单而有效的技术,广泛用于各种机器学习模型的训练过程中,以提高模型的泛化性能并减少过拟合风险。

相关文章
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
2766 0
|
11月前
|
机器学习/深度学习 监控
早停法(Early Stopping)
早停法(Early Stopping)
成功解决A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,co
成功解决A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,co
|
11月前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
18605 7
|
9月前
|
机器学习/深度学习 算法 前端开发
图解前向、反向传播算法,一看就懂!
前向传播是神经网络中信息从输入层经过隐藏层传递到输出层的过程。每个神经元接收前一层的输出,通过加权求和和激活函数处理后传递给下一层,最终生成预测结果。此过程涉及输入信号、加权求和、激活函数应用等步骤。前向传播用于生成预测结果,在训练阶段与真实标签比较以计算损失函数,并在推理阶段直接生成预测值。反向传播则利用链式法则计算损失函数相对于权重的梯度,调整参数以减小误差,从而优化模型性能。两者结合实现神经网络的有效训练和预测。
|
开发者 人工智能 消息中间件
|
11月前
|
人工智能 自然语言处理 物联网
llama factory 从数据集起步 跑通 qwen系列开源生成式大模型 微调
`dataset_info.json` 文件用于管理 llama factory 中的所有数据集,支持 `alpaca` 和 `sharegpt` 格式。通过配置此文件,可以轻松添加自定义数据集。数据集的相关参数包括数据源地址、数据集格式、样本数量等,支持 Hugging Face 和 ModelScope 两个平台的数据集仓库。针对不同格式的数据集,提供了详细的配置示例,如 `alpaca` 格式的指令监督微调数据集、偏好数据集等,以及 `sharegpt` 格式的多模态数据集等。今天我们通过自定义数据集的方式来进行qwen2.5_14B_instruct模型进行微调
4518 7
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
1297 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
机器学习/深度学习 并行计算 PyTorch
从零开始下载torch+cu(无痛版)
这篇文章提供了一个详细的无痛版教程,指导如何从零开始下载并配置支持CUDA的PyTorch GPU版本,包括查看Cuda版本、在官网检索下载包名、下载指定的torch、torchvision、torchaudio库,并在深度学习环境中安装和测试是否成功。
从零开始下载torch+cu(无痛版)
|
并行计算 监控 Java
函数计算操作报错合集之遇到报错:RuntimeError: Expected all tensors to be on the same device,是什么原因
在使用函数计算服务(如阿里云函数计算)时,用户可能会遇到多种错误场景。以下是一些常见的操作报错及其可能的原因和解决方法,包括但不限于:1. 函数部署失败、2. 函数执行超时、3. 资源不足错误、4. 权限与访问错误、5. 依赖问题、6. 网络配置错误、7. 触发器配置错误、8. 日志与监控问题。
1747 1