就AI 基础设施的演进与挑战问题之定义应用的交付模式的问题如何解决

本文涉及的产品
云效 DevOps 流水线,基础版人数 不受限
云效 DevOps 测试管理,基础版人数 不受限
云效 DevOps 项目协作,基础版人数 不受限
简介: 就AI 基础设施的演进与挑战问题之定义应用的交付模式的问题如何解决

问题一:如何定义应用的交付模式?

如何定义应用的交付模式?


参考回答:

我们借助云效平台,通过应用模板来定义应用的交付模式。

具体步骤包括:

首先,在云效appstack上创建应用模板;

然后,在该模板上开启“变更 + 研发流程”服务;

接着,按照特定的研发流程(如基于feature的持续交付模式),为不同阶段定义变量组;

最后,通过模板规范应用的部署方式,包括环境设置和部署策略。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660874


问题二:“特性驱动的持续交付模板”有什么特点?

“特性驱动的持续交付模板”有什么特点?


参考回答:

“特性驱动的持续交付模板”的特点是开发、测试均基于特性分支,集成发布均基于主干分支。

它推崇单个特性的独立开发、独立测试、独立集成与独立交付,以实现快速开始、快速集成和快速交付。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660875


问题三:在云效平台上,如何规范应用的研发交付流程?

在云效平台上,如何规范应用的研发交付流程?


参考回答:

在云效平台上,规范应用的研发交付流程包括:

首先确定应用的环境和部署策略;

然后创建一个多阶段的研发流程,如特性验证阶段和生产部署阶段;

接着为每个阶段定义具体的流水线和步骤,如代码检视、构建、部署和测试等;

最后设置流水线的触发条件和执行分支。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660876


问题四:在特性验证阶段,流水线包含哪些步骤?

在特性验证阶段,流水线包含哪些步骤?


参考回答:

在特性验证阶段,流水线通常包含以下步骤:

代码检视,即对提交的代码进行审查以确保质量;

构建,将代码编译成可执行的文件或包;

部署,将构建好的应用部署到特性验证环境中;以及测试,对部署的应用进行功能测试和性能测试等。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660877


问题五:生产部署阶段的流水线有哪些特别之处?

生产部署阶段的流水线有哪些特别之处?


参考回答:

生产部署阶段的流水线除了包含常规的代码检视、构建、部署等步骤外,还特别增加了审核步骤,以确保应用在进入生产环境之前已经通过了所有的质量检查和验证。此外,该阶段的流水线还限制了运行分支为master,并会自动计算流水线执行时所涉及到的feature分支,并判断其前序阶段的执行成功与否。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/660878

相关实践学习
流水线运行出错排查难?AI帮您智能排查
本实验将带您体验云效流水线Flow的智能排查能力,只需短短1-2分钟,即可体验AI智能排查建议。
ALPD云架构师系列 - 云原生DevOps36计
如何把握和运用云原生技术,撬动新技术红利,实现持续、安全、高效和高质量的应用交付,并提升业务的连续性和稳定性,这是云原生时代持续交付共同面对的机会和挑战。本课程由阿里云开发者学堂和阿里云云效共同出品,是ALPD方法学云架构师系列的核心课程之一,适合架构师、企业工程效能负责人、对DevOps感兴趣的研发、测试、运维。 课程目标 前沿技术:了解云原生下DevOps的正确姿势,享受云原生带来的技术红利 系统知识:全局视角看软件研发生命周期,系统学习DevOps实践技能 课程大纲: 云原生开发和交付:云研发时代软件交付的挑战与云原生工程实践 云原生开发、运行基础设施:无差别的开发、运行环境 自动部署:构建可靠高效的应用发布体系 持续交付:建立团队协同交付的流程和流水线 质量守护:构建和维护测试和质量守护体系 安全保障:打造可信交付的安全保障体系 建立持续反馈和持续改进闭环
相关文章
|
1月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
402 29
|
1月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
312 1
|
1月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
409 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
1月前
|
人工智能 安全 数据可视化
Dify让你拖拽式搭建企业级AI应用
Dify是开源大模型应用开发平台,融合BaaS与LLMOps理念,通过可视化工作流、低代码编排和企业级监控,支持多模型接入与RAG知识库,助力企业快速构建安全可控的AI应用,实现从原型到生产的高效落地。
Dify让你拖拽式搭建企业级AI应用
|
2月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
795 42
|
1月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
458 32
|
1月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
231 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
|
1月前
|
人工智能 算法 Java
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
234 3

热门文章

最新文章