解锁Python魔法!装饰器:让你的代码翩翩起舞,简化繁琐逻辑,让编程成为一场戏剧性的华丽变身!

简介: 【8月更文挑战第21天】在Python编程中,当需要为函数添加如日志记录、性能测试等功能时,手动重复编写相同代码既冗长又难维护。装饰器提供了解决方案:它是一种特殊函数,包裹目标函数以添加额外功能,而不改变原函数结构。装饰器增强了代码复用性、解耦及灵活性。例如,可通过装饰器轻松记录函数执行时间。更高级用法包括带参数的装饰器、多层装饰器以及使用类作为装饰器。掌握装饰器能显著提升Python代码的质量和效率。

你是否曾经在编写Python代码时,发现某个函数或方法需要频繁地在执行前后添加一些额外的逻辑,比如日志记录、性能测试、权限校验等?如果每次调用这些函数时都手动添加这些额外逻辑,不仅代码会变得冗长,而且维护起来也非常困难。幸运的是,Python提供了一种优雅的方式来处理这种情况——装饰器(Decorators)。

什么是装饰器?
装饰器本质上是一个函数,它接收一个函数作为参数并返回一个新的函数。这个新函数会在被装饰的函数执行前后执行一些额外的逻辑,但不会改变原有函数的内部逻辑。简单来说,装饰器就是给函数穿上了一层“外衣”,让函数在保持原有功能的同时,能够附加额外的功能。

为什么使用装饰器?
代码复用:通过装饰器,我们可以将那些重复的逻辑抽象出来,避免在每个需要这些逻辑的函数中重复编写。
解耦:装饰器将额外逻辑与函数本身分离,使得函数更加专注于其核心功能,提高了代码的可读性和可维护性。
灵活性:我们可以根据需要给函数添加不同的装饰器,或者在运行时动态地添加或移除装饰器。
如何编写和使用装饰器?
编写装饰器
下面是一个简单的装饰器示例,用于记录函数的执行时间:

python
import time

def timer(func):
def wrapper(args, **kwargs):
start_time = time.time()
result = func(
args, **kwargs)
end_time = time.time()
print(f"Function {func.name} took {end_time - start_time:.6f} seconds.")
return result
return wrapper

使用装饰器

@timer
def my_function(n):
sum = 0
for i in range(n):
sum += i
return sum

调用函数

my_function(1000000)
在这个例子中,timer是一个装饰器,它接收一个函数func作为参数,并返回一个新的函数wrapper。wrapper函数在被装饰的函数my_function执行前后分别记录了时间,从而计算出了my_function的执行时间。通过在my_function定义前使用@timer语法,我们轻松地给my_function穿上了“时间记录”的外衣。

装饰器的进阶用法
带参数的装饰器:如果装饰器本身需要参数,可以通过定义一个外部函数来接收这些参数,并返回一个真正的装饰器函数。
多层装饰器:一个函数可以被多个装饰器修饰,Python会从下到上执行这些装饰器。
类作为装饰器:除了函数,类也可以作为装饰器使用,通过定义call方法和init方法来实现。
结论
Python中的装饰器是一种强大的工具,它可以帮助我们简化代码,提高代码的可读性和可维护性。通过合理使用装饰器,我们可以将那些重复的逻辑抽象出来,让函数更加专注于其核心功能。希望这篇文章能够帮助你更好地理解和使用Python中的装饰器。

目录
打赏
0
5
5
1
320
分享
相关文章
|
2月前
|
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
586 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
89 28
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
47 0
|
2月前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
42 4
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
如何提高Python代码的性能:优化技巧与实践
本文探讨了如何提高Python代码的性能,重点介绍了一些优化技巧与实践方法。通过使用适当的数据结构、算法和编程范式,以及利用Python内置的性能优化工具,可以有效地提升Python程序的执行效率,从而提升整体应用性能。本文将针对不同场景和需求,分享一些实用的优化技巧,并通过示例代码和性能测试结果加以说明。
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
113 2
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
329 5

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等