【多线程面试题十九】、 公平锁与非公平锁是怎么实现的?

简介: 这篇文章解释了Java中`ReentrantLock`的公平锁和非公平锁的实现原理,其中公平锁通过检查等待队列严格按顺序获取锁,而非公平锁允许新线程有更高机会立即获取锁,两者都依赖于`AbstractQueuedSynchronizer`(AQS)和`volatile`关键字以及CAS技术来确保线程安全和锁的正确同步。

面试官: 公平锁与非公平锁是怎么实现的?**

参考答案:

在Java中实现锁的方式有两种,一种是使用Java自带的关键字synchronized对相应的类或者方法以及代码块进行加锁,另一种是ReentrantLock,前者只能是非公平锁,而后者是默认非公平但可实现公平的一把锁。

ReentrantLock是基于其内部类FairSync(公平锁)和NonFairSync(非公平锁)实现的,并且它的实现依赖于Java同步器框架AbstractQueuedSynchronizer(AQS),AQS使用一个整形的volatile变量state来维护同步状态,这个volatile变量是实现ReentrantLock的关键。我们来看一下ReentrantLock的类图:

在这里插入图片描述
ReentrantLock 的公平锁和非公平锁都委托了 AbstractQueuedSynchronizer#acquire 去请求获取。

public final void acquire(int arg) {     if (!tryAcquire(arg) &&         acquireQueued(addWaiter(Node.EXCLUSIVE), arg))         selfInterrupt(); }
  • tryAcquire 是一个抽象方法,是公平与非公平的实现原理所在。

  • addWaiter 是将当前线程结点加入等待队列之中。公平锁在锁释放后会严格按照等到队列去取后续值,而非公平锁在对于新晋线程有很大优势。

  • acquireQueued 在多次循环中尝试获取到锁或者将当前线程阻塞。

  • selfInterrupt 如果线程在阻塞期间发生了中断,调用 Thread.currentThread().interrupt() 中断当前线程。

公平锁和非公平锁在说的获取上都使用到了 volatile 关键字修饰的state字段, 这是保证多线程环境下锁的获取与否的核心。但是当并发情况下多个线程都读取到 state == 0时,则必须用到CAS技术,一门CPU的原子锁技术,可通过CPU对共享变量加锁的形式,实现数据变更的原子操作。volatile 和 CAS的结合是并发抢占的关键。

  • 公平锁FairSync

公平锁的实现机理在于每次有线程来抢占锁的时候,都会检查一遍有没有等待队列,如果有, 当前线程会执行如下步骤:

if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) {        setExclusiveOwnerThread(current);     return true;  }

其中hasQueuedPredecessors是用于检查是否有等待队列的:

public final boolean hasQueuedPredecessors() {     Node t = tail; // Read fields in reverse initialization order     Node h = head;     Node s;     return h != t &&         ((s = h.next) == null || s.thread != Thread.currentThread()); }
  • 非公平锁NonfairSync

非公平锁在实现的时候多次强调随机抢占:

if (c == 0) {  if (compareAndSetState(0, acquires)) {   setExclusiveOwnerThread(current);   return true;      } }

与公平锁的区别在于新晋获取锁的进程会有多次机会去抢占锁,被加入了等待队列后则跟公平锁没有区别。

相关文章
|
3天前
|
安全 Java 编译器
线程安全问题和锁
本文详细介绍了线程的状态及其转换,包括新建、就绪、等待、超时等待、阻塞和终止状态,并通过示例说明了各状态的特点。接着,文章深入探讨了线程安全问题,分析了多线程环境下变量修改引发的数据异常,并通过使用 `synchronized` 关键字和 `volatile` 解决内存可见性问题。最后,文章讲解了锁的概念,包括同步代码块、同步方法以及 `Lock` 接口,并讨论了死锁现象及其产生的原因与解决方案。
25 10
线程安全问题和锁
|
16天前
|
数据采集 存储 安全
如何确保Python Queue的线程和进程安全性:使用锁的技巧
本文探讨了在Python爬虫技术中使用锁来保障Queue(队列)的线程和进程安全性。通过分析`queue.Queue`及`multiprocessing.Queue`的基本线程与进程安全特性,文章指出在特定场景下使用锁的重要性。文中还提供了一个综合示例,该示例利用亿牛云爬虫代理服务、多线程技术和锁机制,实现了高效且安全的网页数据采集流程。示例涵盖了代理IP、User-Agent和Cookie的设置,以及如何使用BeautifulSoup解析HTML内容并将其保存为文档。通过这种方式,不仅提高了数据采集效率,还有效避免了并发环境下的数据竞争问题。
如何确保Python Queue的线程和进程安全性:使用锁的技巧
|
22天前
|
Java
【多线程面试题二十五】、说说你对AQS的理解
这篇文章阐述了对Java中的AbstractQueuedSynchronizer(AQS)的理解,AQS是一个用于构建锁和其他同步组件的框架,它通过维护同步状态和FIFO等待队列,以及线程的阻塞与唤醒机制,来实现同步器的高效管理,并且可以通过实现特定的方法来自定义同步组件的行为。
【多线程面试题二十五】、说说你对AQS的理解
|
16天前
|
Java 开发者
Java多线程教程:使用ReentrantLock实现高级锁功能
Java多线程教程:使用ReentrantLock实现高级锁功能
19 1
|
22天前
|
消息中间件 缓存 算法
Java多线程面试题总结(上)
进程和线程是操作系统管理程序执行的基本单位,二者有明显区别: 1. **定义与基本单位**:进程是资源分配的基本单位,拥有独立的内存空间;线程是调度和执行的基本单位,共享所属进程的资源。 2. **独立性与资源共享**:进程间相互独立,通信需显式机制;线程共享进程资源,通信更直接快捷。 3. **管理与调度**:进程管理复杂,线程管理更灵活。 4. **并发与并行**:进程并发执行,提高资源利用率;线程不仅并发还能并行执行,提升执行效率。 5. **健壮性**:进程更健壮,一个进程崩溃不影响其他进程;线程崩溃可能导致整个进程崩溃。
28 2
|
9天前
|
安全 Java API
Java线程池原理与锁机制分析
综上所述,Java线程池和锁机制是并发编程中极其重要的两个部分。线程池主要用于管理线程的生命周期和执行并发任务,而锁机制则用于保障线程安全和防止数据的并发错误。它们深入地结合在一起,成为Java高效并发编程实践中的关键要素。
8 0
|
15天前
|
数据采集 Java Python
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器
|
18天前
|
Java 开发者
解锁Java并发编程的秘密武器!揭秘AQS,让你的代码从此告别‘锁’事烦恼,多线程同步不再是梦!
【8月更文挑战第25天】AbstractQueuedSynchronizer(AQS)是Java并发包中的核心组件,作为多种同步工具类(如ReentrantLock和CountDownLatch等)的基础。AQS通过维护一个表示同步状态的`state`变量和一个FIFO线程等待队列,提供了一种高效灵活的同步机制。它支持独占式和共享式两种资源访问模式。内部使用CLH锁队列管理等待线程,当线程尝试获取已持有的锁时,会被放入队列并阻塞,直至锁被释放。AQS的巧妙设计极大地丰富了Java并发编程的能力。
26 0
|
22天前
|
存储 缓存 安全
Java多线程面试题总结(中)
Java内存模型(JMM)定义了程序中所有变量的访问规则与范围,确保多线程环境下的数据一致性。JMM包含主内存与工作内存的概念,通过8种操作管理两者间的交互,确保原子性、可见性和有序性。`synchronized`和`volatile`关键字提供同步机制,前者确保互斥访问,后者保证变量更新的可见性。多线程操作涉及不同状态,如新建(NEW)、可运行(RUNNABLE)等,并可通过中断、等待和通知等机制协调线程活动。`volatile`虽不确保线程安全,但能确保变量更新对所有线程可见。
15 0
|
22天前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。