【C语言】多进程服务器

简介: 【C语言】多进程服务器

多进程服务器

步骤

  服务器使用父进程 fork 创建子进程来和客户端进行通信,父进程负责取出连接请求。并且父进程接收子进程退出信号,通过信号处理函数回收子进程
步骤:
1.首先屏蔽子进程退出信号
2.使用socket函数,获取一个socket文件描述符
3.使用setsockopt端口复用
4.使用bind函数允许客户端的哪些ip可以访问服务器
5.使用listen监听客户端连接
6.使用accept从已连接的客户端队列中取出一个文件描述符,与它通信
7.使用fork函数创建一个子进程去与上面的文件描述符通信

代码

#include "socketwrap.h"
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <strings.h>
#include <string.h>
#include <ctype.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <arpa/inet.h>

// 信号处理函数
void waitchild(int signo)
{
   
    pid_t wpid;
    while (1)
    {
   
        wpid = waitpid(-1, NULL, WNOHANG);
        if (wpid > 0)
        {
   
            printf("child exit, wpid==[%d]\n", wpid);
        }
        else if (wpid == 0 || wpid == -1)
        {
   
            break;
        }
    }
}

int main()
{
   
    // 阻塞SIGCHLD信号
    sigset_t mask;
    sigemptyset(&mask);
    sigaddset(&mask, SIGCHLD);
    sigprocmask(SIG_BLOCK, &mask, NULL);
    int sigbol = 1;

    int sfd = Socket(AF_INET, SOCK_STREAM, 0);

    // 设置端口复用
    int opt = 1;
    setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(int));

    struct sockaddr_in soaddr;
    bzero(&soaddr, sizeof(soaddr));

    soaddr.sin_family = AF_INET;
    soaddr.sin_port = htons(9999);
    soaddr.sin_addr.s_addr = htonl(INADDR_ANY);

    Bind(sfd, (struct sockaddr *)&soaddr, sizeof(soaddr));

    //监听-listen
    Listen(sfd, 128);

    struct sockaddr_in clientsocket;
    socklen_t clilen;

    char sIP[16];

    while (1)
    {
   
        clilen = sizeof(clientsocket);
        bzero(&clientsocket, clilen);

        int cfd = Accept(sfd, (struct sockaddr *)&clientsocket, &clilen);

        /* */
        int pid = fork();
        if (pid == 0)
        {
   
            // 子进程
            close(sfd);
            char buff[64];
            printf("current pid is [%d],father is [%d]\n", getpid(), getppid());
            while (1)
            {
   
                memset(buff, 0x00, sizeof(buff));
                int n = Read(cfd, buff, sizeof(buff));
                if (n == 0)
                {
   
                    return 0;
                }
                else if (n < 0)
                {
   
                    perror("child read error");
                    return -1;
                }
                printf("child [%d] recv data from [%s:%d]:[%s]\n", getpid(), inet_ntop(AF_INET, &clientsocket.sin_addr.s_addr, sIP, sizeof(sIP)), ntohs(clientsocket.sin_port), buff);
                for (int i = 0; i < n; i++)
                {
   
                    buff[i] = toupper(buff[i]);
                }
                n = Write(cfd, buff, n);
                if (n <= 0)
                {
   
                    perror("child write error");
                    return -1;
                }
            }
        }
        else if (pid > 0)
        {
   
            // 父进程
            close(cfd);

            if (sigbol == 1)
            {
   
                sigbol = 0;
                // 注册SIGCHLD信号处理函数
                struct sigaction act;
                act.sa_handler = waitchild;
                act.sa_flags = 0;
                sigemptyset(&act.sa_mask);
                sigaction(SIGCHLD, &act, NULL);

                // 解除对SIGCHLD信号的阻塞
                sigprocmask(SIG_UNBLOCK, &mask, NULL);
            }

            continue;
        }
        else
        {
   
            perror("fork error");
            close(sfd);
            return -1;
        }


    }

    return 0;
}
目录
相关文章
|
2月前
|
存储 算法 Linux
C语言 多进程编程(一)进程创建
本文详细介绍了Linux系统中的进程管理。首先,文章解释了进程的概念及其特点,强调了进程作为操作系统中独立可调度实体的重要性。文章还深入讲解了Linux下的进程管理,包括如何获取进程ID、进程地址空间、虚拟地址与物理地址的区别,以及进程状态管理和优先级设置等内容。此外,还介绍了常用进程管理命令如`ps`、`top`、`pstree`和`kill`的使用方法。最后,文章讨论了进程的创建、退出和等待机制,并展示了如何通过`fork()`、`exec`家族函数以及`wait()`和`waitpid()`函数来管理和控制进程。此外,还介绍了守护进程的创建方法。
C语言 多进程编程(一)进程创建
|
2月前
|
网络协议 C语言
C语言 网络编程(十三)并发的TCP服务端-以进程完成功能
这段代码实现了一个基于TCP协议的多进程并发服务端和客户端程序。服务端通过创建子进程来处理多个客户端连接,解决了粘包问题,并支持不定长数据传输。客户端则循环发送数据并接收服务端回传的信息,同样处理了粘包问题。程序通过自定义的数据长度前缀确保了数据的完整性和准确性。
|
2月前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
|
2月前
|
Linux C语言
C语言 多进程编程(四)定时器信号和子进程退出信号
本文详细介绍了Linux系统中的定时器信号及其相关函数。首先,文章解释了`SIGALRM`信号的作用及应用场景,包括计时器、超时重试和定时任务等。接着介绍了`alarm()`函数,展示了如何设置定时器以及其局限性。随后探讨了`setitimer()`函数,比较了它与`alarm()`的不同之处,包括定时器类型、精度和支持的定时器数量等方面。最后,文章讲解了子进程退出时如何利用`SIGCHLD`信号,提供了示例代码展示如何处理子进程退出信号,避免僵尸进程问题。
|
2月前
|
C语言
C语言 网络编程(八)并发的UDP服务端 以进程完成功能
这段代码展示了如何使用多进程处理 UDP 客户端和服务端通信。客户端通过发送登录请求与服务端建立连接,并与服务端新建的子进程进行数据交换。服务端则负责接收请求,验证登录信息,并创建子进程处理客户端的具体请求。子进程会创建一个新的套接字与客户端通信,实现数据收发功能。此方案有效利用了多进程的优势,提高了系统的并发处理能力。
|
2月前
|
消息中间件 Unix Linux
C语言 多进程编程(五)消息队列
本文介绍了Linux系统中多进程通信之消息队列的使用方法。首先通过`ftok()`函数生成消息队列的唯一ID,然后使用`msgget()`创建消息队列,并通过`msgctl()`进行操作,如删除队列。接着,通过`msgsnd()`函数发送消息到消息队列,使用`msgrcv()`函数从队列中接收消息。文章提供了详细的函数原型、参数说明及示例代码,帮助读者理解和应用消息队列进行进程间通信。
|
2月前
|
缓存 Linux C语言
C语言 多进程编程(六)共享内存
本文介绍了Linux系统下的多进程通信机制——共享内存的使用方法。首先详细讲解了如何通过`shmget()`函数创建共享内存,并提供了示例代码。接着介绍了如何利用`shmctl()`函数删除共享内存。随后,文章解释了共享内存映射的概念及其实现方法,包括使用`shmat()`函数进行映射以及使用`shmdt()`函数解除映射,并给出了相应的示例代码。最后,展示了如何在共享内存中读写数据的具体操作流程。
|
2月前
|
消息中间件 Unix Linux
C语言 多进程编程(二)管道
本文详细介绍了Linux下的进程间通信(IPC),重点讨论了管道通信机制。首先,文章概述了进程间通信的基本概念及重要性,并列举了几种常见的IPC方式。接着深入探讨了管道通信,包括无名管道(匿名管道)和有名管道(命名管道)。无名管道主要用于父子进程间的单向通信,有名管道则可用于任意进程间的通信。文中提供了丰富的示例代码,展示了如何使用`pipe()`和`mkfifo()`函数创建管道,并通过实例演示了如何利用管道进行进程间的消息传递。此外,还分析了管道的特点、优缺点以及如何通过`errno`判断管道是否存在,帮助读者更好地理解和应用管道通信技术。
|
2月前
|
Linux C语言
C语言 多进程编程(七)信号量
本文档详细介绍了进程间通信中的信号量机制。首先解释了资源竞争、临界资源和临界区的概念,并重点阐述了信号量如何解决这些问题。信号量作为一种协调共享资源访问的机制,包括互斥和同步两方面。文档还详细描述了无名信号量的初始化、等待、释放及销毁等操作,并提供了相应的 C 语言示例代码。此外,还介绍了如何创建信号量集合、初始化信号量以及信号量的操作方法。最后,通过实际示例展示了信号量在进程互斥和同步中的应用,包括如何使用信号量避免资源竞争,并实现了父子进程间的同步输出。附带的 `sem.h` 和 `sem.c` 文件提供了信号量操作的具体实现。
|
3月前
|
运维 算法 调度
深入理解操作系统:进程调度与优先级自动化运维:使用Ansible实现服务器集群管理
【8月更文挑战第27天】在操作系统的众多奥秘中,进程调度无疑是一个既简单又复杂的主题。它就像是交响乐团中的指挥,协调着每一个音符,确保乐曲和谐而有序地进行。本文将带领读者走进进程调度的世界,探索其背后的原理和实现,同时通过代码示例揭示其精妙之处。让我们一起揭开进程调度的神秘面纱,理解它在操作系统中的重要性。