基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真

简介: 基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

eb58fc91248182d3341ddaa80a3e1c6b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
6440b217526599dd00e87319c10bd872_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
c6a22f362e3ceaecc6b23b7715db2595_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于最小二乘(Least Squares, LS)算法的正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)系统信道估计与均衡是一项关键技术,它在无线通信系统中扮演着重要角色。OFDM结合了QPSK(Quadrature Phase Shift Keying)调制,能够在多径衰落信道中提供高效的频谱利用率和鲁棒性。

2.1 OFDM信号模型
在OFDM系统中,数据被分割成多个子载波,每个子载波上传输一个较低速的数据流。假设系统有N个子载波,发送的数据向量为s=[s0​,s1​,…,sN−1​]T,其中si​是子载波i上的数据符号。在发送端,通过IDFT(Inverse Discrete Fourier Transform, 离散傅里叶逆变换)将频域信号转换为时域信号:

1713c0beacaff5d1e2b0b455964192d9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 信道模型
在无线信道中,信号会经历多径衰落。假设信道冲击响应为h(t),则接收信号可以表示为:

a8122c461a2715fa92265c0cc26faf32_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在OFDM系统中,通过在符号之间插入保护间隔(循环前缀CP)来克服多径效应。假设CP长度为τCP​,则接收信号可以表示为:

960d585ae69f6d307fb5edd2bf483e94_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.3 最小二乘(LS)算法
在OFDM系统中,通常使用导频符号来进行信道估计。假设在子载波上发送的导频符号为p=[p0​,p1​,…,pN−1​]T,则接收的导频符号为yp​。基于LS算法的信道估计可以表示为最小化残差平方和:

814105a2696591de4a1fc9ac03294123_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.4 均衡器设计
在OFDM系统中,均衡器用于补偿信道的影响,恢复原始数据符号。基于LS估计的均衡器可以表示为:

35798b5370283d3b12497ba187da661c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于LS算法的OFDM+QPSK系统信道估计与均衡是无线通信系统中的关键技术之一。通过合理的导频符号设计、准确的信道估计以及有效的均衡策略,可以显著提高系统的性能。随着通信技术的发展,未来的研究将进一步探索更高效的信道估计与均衡方法,以适应更复杂的无线环境。

3.MATLAB核心程序

errs=[];
for ij=SNRS
    ij
    R0   = awgn(T_final,ij,'measured');
    %串并变换
    R1   = reshape(R0,Len_FFT+Lcp,Symbs).';
    %去保护间隔
    for k= 1:Symbs
        for i=1:Len_FFT
            R2(k,i) = R1(k,i+Lcp);
        end
    end
    %FFT
    R3            = fft(R2,Len_FFT,2);
    R4            = R3(:,Carrs);
    %信道估计
    R4_signal     = R4(:,signal);
    R4_pilot      = R4(:,pilot);
    %信道估计
    Hch_LS2       = func_HLS_est(R4_pilot,PN_qpsk3,Symbs,Num_pilot,Num_carr,Step_pilot);
    %信道均衡
    R_bits        = R4_signal./Hch_LS2;
    %并串变换
    Rec_ps        = reshape(R_bits.',1,Len_pilot/Nsamp);
    %QPSK解调
    Rec_bits      = func_deQPSK(Rec_ps);
    errs          = [errs,length(find(tmps~=Rec_bits))];
end

BER1=errs/Len_pilot;
figure;
semilogy(SNRS,BER1,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
grid on;
xlabel('SNR');
ylabel('误码率');
legend('OFDM+LS信道估计');


if AMPS==0
   save R1_0.mat  SNRS BER1
end
if AMPS==0.2
   save R1_1.mat  SNRS BER1
end
if AMPS==0.5
   save R1_2.mat  SNRS BER1
end
if AMPS==1
   save R1_3.mat  SNRS BER1
end
0X_067m
相关文章
|
6天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
23 3
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
35 2
|
1月前
|
数据采集 算法 5G
基于稀疏CoSaMP算法的大规模MIMO信道估计matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
该研究采用MATLAB 2022a仿真大规模MIMO系统中的信道估计,利用压缩感知技术克服传统方法的高开销问题。在稀疏信号恢复理论基础上,通过CoSaMP等算法实现高效信道估计。核心程序对比了LS、OMP、NOMP及CoSaMP等多种算法的均方误差(MSE),验证其在不同信噪比下的性能。仿真结果显示,稀疏CoSaMP表现优异。
59 2
|
23天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
54 0
|
1月前
|
算法 数据安全/隐私保护
星座图整形技术在光纤通信中的matlab性能仿真,分别对比标准QAM,概率整形QAM以及几何整形QAM
本文介绍了现代光纤通信系统中的星座图整形技术,包括标准QAM、概率整形QAM和几何整形QAM三种方法,并对比了它们的原理及优缺点。MATLAB 2022a仿真结果显示了不同技术的效果。标准QAM实现简单但效率有限;概率整形QAM通过非均匀符号分布提高传输效率;几何整形QAM优化星座点布局,增强抗干扰能力。附带的核心程序代码展示了GMI计算过程。
55 0
|
20天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
7天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。