基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真

简介: 基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

eb58fc91248182d3341ddaa80a3e1c6b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
6440b217526599dd00e87319c10bd872_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
c6a22f362e3ceaecc6b23b7715db2595_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于最小二乘(Least Squares, LS)算法的正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)系统信道估计与均衡是一项关键技术,它在无线通信系统中扮演着重要角色。OFDM结合了QPSK(Quadrature Phase Shift Keying)调制,能够在多径衰落信道中提供高效的频谱利用率和鲁棒性。

2.1 OFDM信号模型
在OFDM系统中,数据被分割成多个子载波,每个子载波上传输一个较低速的数据流。假设系统有N个子载波,发送的数据向量为s=[s0​,s1​,…,sN−1​]T,其中si​是子载波i上的数据符号。在发送端,通过IDFT(Inverse Discrete Fourier Transform, 离散傅里叶逆变换)将频域信号转换为时域信号:

1713c0beacaff5d1e2b0b455964192d9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 信道模型
在无线信道中,信号会经历多径衰落。假设信道冲击响应为h(t),则接收信号可以表示为:

a8122c461a2715fa92265c0cc26faf32_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在OFDM系统中,通过在符号之间插入保护间隔(循环前缀CP)来克服多径效应。假设CP长度为τCP​,则接收信号可以表示为:

960d585ae69f6d307fb5edd2bf483e94_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.3 最小二乘(LS)算法
在OFDM系统中,通常使用导频符号来进行信道估计。假设在子载波上发送的导频符号为p=[p0​,p1​,…,pN−1​]T,则接收的导频符号为yp​。基于LS算法的信道估计可以表示为最小化残差平方和:

814105a2696591de4a1fc9ac03294123_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.4 均衡器设计
在OFDM系统中,均衡器用于补偿信道的影响,恢复原始数据符号。基于LS估计的均衡器可以表示为:

35798b5370283d3b12497ba187da661c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于LS算法的OFDM+QPSK系统信道估计与均衡是无线通信系统中的关键技术之一。通过合理的导频符号设计、准确的信道估计以及有效的均衡策略,可以显著提高系统的性能。随着通信技术的发展,未来的研究将进一步探索更高效的信道估计与均衡方法,以适应更复杂的无线环境。

3.MATLAB核心程序

errs=[];
for ij=SNRS
    ij
    R0   = awgn(T_final,ij,'measured');
    %串并变换
    R1   = reshape(R0,Len_FFT+Lcp,Symbs).';
    %去保护间隔
    for k= 1:Symbs
        for i=1:Len_FFT
            R2(k,i) = R1(k,i+Lcp);
        end
    end
    %FFT
    R3            = fft(R2,Len_FFT,2);
    R4            = R3(:,Carrs);
    %信道估计
    R4_signal     = R4(:,signal);
    R4_pilot      = R4(:,pilot);
    %信道估计
    Hch_LS2       = func_HLS_est(R4_pilot,PN_qpsk3,Symbs,Num_pilot,Num_carr,Step_pilot);
    %信道均衡
    R_bits        = R4_signal./Hch_LS2;
    %并串变换
    Rec_ps        = reshape(R_bits.',1,Len_pilot/Nsamp);
    %QPSK解调
    Rec_bits      = func_deQPSK(Rec_ps);
    errs          = [errs,length(find(tmps~=Rec_bits))];
end

BER1=errs/Len_pilot;
figure;
semilogy(SNRS,BER1,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
grid on;
xlabel('SNR');
ylabel('误码率');
legend('OFDM+LS信道估计');


if AMPS==0
   save R1_0.mat  SNRS BER1
end
if AMPS==0.2
   save R1_1.mat  SNRS BER1
end
if AMPS==0.5
   save R1_2.mat  SNRS BER1
end
if AMPS==1
   save R1_3.mat  SNRS BER1
end
0X_067m
相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
121 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)