SpringCloud:服务保护和分布式事务详解

简介: SpringCloud:服务保护和分布式事务详解

 ♥️作者:小宋1021

🤵‍♂️个人主页:小宋1021主页

♥️坚持分析平时学习到的项目以及学习到的软件开发知识,和大家一起努力呀!!!

🎈🎈加油! 加油! 加油! 加油

🎈欢迎评论 💬点赞👍🏻 收藏 📂加关注+


在微服务远程调用的过程中,还存在几个问题需要解决。

我们拿购物商城的项目来举例:

首先是业务健壮性问题:

例如在查询购物车列表业务中,购物车服务需要查询最新的商品信息,与购物车数据做对比,提醒用户。大家设想一下,如果商品服务查询时发生故障,查询购物车列表在调用商品服 务时,是不是也会异常?从而导致购物车查询失败。但从业务角度来说,为了提升用户体验,即便是商品查询失败,购物车列表也应该正确展示出来,哪怕是不包含最新的商品信息。

雪崩问题

还有级联失败问题(也叫雪崩问题):

还是查询购物车的业务,假如商品服务业务并发较高,占用过多Tomcat连接。可能会导致商品服务的所有接口响应时间增加,延迟变高,甚至是长时间阻塞直至查询失败。

此时查询购物车业务需要查询并等待商品查询结果,从而导致查询购物车列表业务的响应时间也变长,甚至也阻塞直至无法访问。而此时如果查询购物车的请求较多,可能导致购物车服务的Tomcat连接占用较多,所有接口的响应时间都会增加,整个服务性能很差, 甚至不可用。

image.gif 编辑

依次类推,整个微服务群中与购物车服务、商品服务等有调用关系的服务可能都会出现问题,最终导致整个集群不可用。

image.gif 编辑

这就是级联失败问题,或者叫雪崩问题。

那么雪崩问题产生的原因是什么呢?

  1. 微服务相互调用,服务提供者出现故障或阻塞
  2. 服务调用者没有做好异常处理,导致自身故障
  3. 调用链中的所有服务级联失败,导致整个集群故障

解决问题的思路有哪些呢?

  • 尽量避免服务出现故障或阻塞
  • 保证代码的健壮性
  • 保证网络通畅
  • 能应对较高的并发请求

还有跨服务的事务问题:

比如下单业务,下单的过程中需要调用多个微服务:

  • 商品服务:扣减库存
  • 订单服务:保存订单
  • 购物车服务:清理购物车

这些业务全部都是数据库的写操作,我们必须确保所有操作的同时成功或失败。但是这些操作在不同微服务,也就是不同的Tomcat,这样的情况如何确保事务特性呢?

这些问题都会在这篇文章中找到答案。

今天的内容会分成几部分:

  • 微服务保护
  • 服务保护方案
  • 请求限流
  • 隔离和熔断
  • 分布式事务
  • 初识分布式事务
  • Seata

通过这篇文章的学习,你将能掌握下面的能力:

  • 知道雪崩问题产生原因及常见解决方案
  • 能使用Sentinel实现服务保护
  • 理解分布式事务产生的原因
  • 能使用Seata解决分布式事务问题
  • 理解AT模式基本原理

微服务保护

保证服务运行的健壮性,避免级联失败导致的雪崩问题,就属于微服务保护。我们就一起来学习一下微服务保护的常见方案以及对应的技术。

服务保护方案

微服务保护的方案有很多,比如:

  • 请求限流
  • 线程隔离
  • 服务熔断

这些方案或多或少都会导致服务的体验上略有下降,比如请求限流,降低了并发上限;线程隔离,降低了可用资源数量;服务熔断,降低了服务的完整度,部分服务变的不可用或弱可用。因此这些方案都属于服务降级的方案。但通过这些方案,服务的健壮性得到了提升,

接下来,我们就逐一了解这些方案的原理。

请求限流

服务故障最重要原因,就是并发太高!解决了这个问题,就能避免大部分故障。当然,接口的并发不是一直很高,而是突发的。因此请求限流,就是限制或控制接口访问的并发流量,避免服务因流量激增而出现故障。

请求限流往往会有一个限流器,数量高低起伏的并发请求曲线,经过限流器就变的非常平稳。这就像是水电站的大坝,起到蓄水的作用,可以通过开关控制水流出的大小,让下游水流始终维持在一个平稳的量。

image.gif 编辑

线程隔离

当一个业务接口响应时间长,而且并发高时,就可能耗尽服务器的线程资源,导致服务内的其它接口受到影响。所以我们必须把这种影响降低,或者缩减影响的范围。线程隔离正是解决这个问题的好办法。

线程隔离的思想来自轮船的舱壁模式:

image.gif 编辑

轮船的船舱会被隔板分割为N个相互隔离的密闭舱,假如轮船触礁进水,只有损坏的部分密闭舱会进水,而其他舱由于相互隔离,并不会进水。这样就把进水控制在部分船体,避免了整个船舱进水而沉没。

为了避免某个接口故障或压力过大导致整个服务不可用,我们可以限定每个接口可以使用的资源范围,也就是将其“隔离”起来。

image.gif 编辑

如图所示,我们给查询购物车业务限定可用线程数量上限为20,这样即便查询购物车的请求因为查询商品服务而出现故障,也不会导致服务器的线程资源被耗尽,不会影响到其它接口。

服务熔断

服务熔断:由断路器统计请求的异常比例或慢调用比例,如果超出阈值则会熔断该业务,则拦截接口的请求。熔断期间,所有请求快速失败,全部走fallback逻辑。

线程隔离虽然避免了雪崩问题,但故障服务(商品服务)依然会拖慢购物车服务(服务调用方)的接口响应速度。而且商品查询的故障依然会导致查询购物车功能出现故障,购物车业务也变的不可用了。

所以,我们要做两件事情:

  • 编写服务降级逻辑:就是服务调用失败后的处理逻辑,根据业务场景,可以抛出异常,也可以返回友好提示或默认数据。
  • 异常统计和熔断:统计服务提供方的异常比例,当比例过高表明该接口会影响到其它服务,应该拒绝调用该接口,而是直接走降级逻辑。

image.gif 编辑

Sentinel

微服务保护的技术有很多,但在目前国内使用较多的还是Sentinel,所以接下来我们学习Sentinel的使用。

介绍和安装

home | Sentinel (sentinelguard.io)

Sentinel 的使用可以分为两个部分:

  • 核心库(Jar包):不依赖任何框架/库,能够运行于 Java 8 及以上的版本的运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。在项目中引入依赖即可实现服务限流、隔离、熔断等功能。
  • 控制台(Dashboard):Dashboard 主要负责管理推送规则、监控、管理机器信息等。

为了方便监控微服务,我们先把Sentinel的控制台搭建出来。

1)下载jar包

下载地址:

Releases · alibaba/Sentinel (github.com)

2)运行

将jar包放在任意非中文、不包含特殊字符的目录下,重命名为sentinel-dashboard.jar

然后运行如下命令启动控制台:

java -Dserver.port=8090 -Dcsp.sentinel.dashboard.server=localhost:8090 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard.jar

其它启动时可配置参数可参考官方文档:

启动配置项 · alibaba/Sentinel Wiki · GitHub

3)访问

访问http://localhost:8090页面,就可以看到sentinel的控制台了:

image.gif 编辑

需要输入账号和密码,默认都是:sentinel

登录后,即可看到控制台,默认会监控sentinel-dashboard服务本身:

image.gif 编辑

微服务整合

我们在cart-service模块中整合sentinel,连接sentinel-dashboard控制台,步骤如下:

1)引入sentinel依赖

<!--sentinel-->

<dependency>

   <groupId>com.alibaba.cloud</groupId>

   <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>

</dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

spring:

 cloud:

   sentinel:

     transport:

       dashboard: localhost:8090

3)访问cart-service的任意端点

重启cart-service,然后访问查询购物车接口,sentinel的客户端就会将服务访问的信息提交到sentinel-dashboard控制台。并展示出统计信息:

image.gif 编辑

点击簇点链路菜单,会看到下面的页面:

image.gif 编辑

所谓簇点链路,就是单机调用链路,是一次请求进入服务后经过的每一个被Sentinel监控的资源。默认情况下,Sentinel会监控SpringMVC的每一个Endpoint(接口)。

因此,我们看到/carts这个接口路径就是其中一个簇点,我们可以对其进行限流、熔断、隔离等保护措施。

不过,需要注意的是,我们的SpringMVC接口是按照Restful风格设计,因此购物车的查询、删除、修改等接口全部都是/carts路径:

image.gif 编辑

默认情况下Sentinel会把路径作为簇点资源的名称,无法区分路径相同但请求方式不同的接口,查询、删除、修改等都被识别为一个簇点资源,这显然是不合适的。

所以我们可以选择打开Sentinel的请求方式前缀,把请求方式 + 请求路径作为簇点资源名:

首先,在cart-serviceapplication.yml中添加下面的配置:

spring:

 cloud:

   sentinel:

     transport:

       dashboard: localhost:8090

     http-method-specify: true # 开启请求方式前缀

然后,重启服务,通过页面访问购物车的相关接口,可以看到sentinel控制台的簇点链路发生了变化:

image.gif 编辑

请求限流

在簇点链路后面点击流控按钮,即可对其做限流配置

image.gif 编辑

在弹出的菜单中这样填写:

image.gif 编辑

这样就把查询购物车列表这个簇点资源的流量限制在了每秒6个,也就是最大QPS为6.

我们利用Jemeter做限流测试,我们每秒发出10个请求:

image.gif 编辑

最终监控结果如下:

image.gif 编辑

可以看出GET:/carts这个接口的通过QPS稳定在6附近,而拒绝的QPS在4附近,符合我们的预期。

线程隔离

限流可以降低服务器压力,尽量减少因并发流量引起的服务故障的概率,但并不能完全避免服务故障。一旦某个服务出现故障,我们必须隔离对这个服务的调用,避免发生雪崩。

比如,查询购物车的时候需要查询商品,为了避免因商品服务出现故障导致购物车服务级联失败,我们可以把购物车业务中查询商品的部分隔离起来,限制可用的线程资源:

image.gif 编辑

这样,即便商品服务出现故障,最多导致查询购物车业务故障,并且可用的线程资源也被限定在一定范围,不会导致整个购物车服务崩溃。

所以,我们要对查询商品的FeignClient接口做线程隔离。

OpenFeign整合Sentinel

修改cart-service模块的application.yml文件,开启Feign的sentinel功能:

feign:

 sentinel:

   enabled: true # 开启feign对sentinel的支持

需要注意的是,默认情况下SpringBoot项目的tomcat最大线程数是200,允许的最大连接是8492,单机测试很难打满。

所以我们需要配置一下cart-service模块的application.yml文件,修改tomcat连接:

server:

 port: 8082

 tomcat:

   threads:

     max: 50 # 允许的最大线程数

   accept-count: 50 # 最大排队等待数量

   max-connections: 100 # 允许的最大连接

然后重启cart-service服务,可以看到查询商品的FeignClient自动变成了一个簇点资源:

image.gif 编辑

配置线程隔离

接下来,点击查询商品的FeignClient对应的簇点资源后面的流控按钮:

image.gif 编辑

在弹出的表单中填写下面内容:

image.gif 编辑

注意,这里勾选的是并发线程数限制,也就是说这个查询功能最多使用5个线程,而不是5QPS。如果查询商品的接口每秒处理2个请求,则5个线程的实际QPS在10左右,而超出的请求自然会被拒绝。

image.gif 编辑

我们利用Jemeter测试,每秒发送100个请求:

image.gif 编辑

最终测试结果如下:

image.gif 编辑

进入查询购物车的请求每秒大概在100,而在查询商品时却只剩下每秒10左右,符合我们的预期。

此时如果我们通过页面访问购物车的其它接口,例如添加购物车、修改购物车商品数量,发现不受影响:

image.gif 编辑

响应时间非常短,这就证明线程隔离起到了作用,尽管查询购物车这个接口并发很高,但是它能使用的线程资源被限制了,因此不会影响到其它接口。

服务熔断

上面,我们利用线程隔离对查询购物车业务进行隔离,保护了购物车服务的其它接口。由于查询商品的功能耗时较高(我们模拟了500毫秒延时),再加上线程隔离限定了线程数为5,导致接口吞吐能力有限,最终QPS只有10左右。这就导致了几个问题:

第一,超出的QPS上限的请求就只能抛出异常,从而导致购物车的查询失败。但从业务角度来说,即便没有查询到最新的商品信息,购物车也应该展示给用户,用户体验更好。也就是给查询失败设置一个降级处理逻辑。

第二,由于查询商品的延迟较高(模拟的500ms),从而导致查询购物车的响应时间也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。对于商品服务这种不太健康的接口,我们应该直接停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断

编写降级逻辑

触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好。

给FeignClient编写失败后的降级逻辑有两种方式:

  • 方式一:FallbackClass,无法对远程调用的异常做处理
  • 方式二:FallbackFactory,可以对远程调用的异常做处理,我们一般选择这种方式。

这里我们演示方式二的失败降级处理。

步骤一:在hm-api模块中给ItemClient定义降级处理类,实现FallbackFactory

image.gif 编辑

代码如下:

package com.hmall.api.client.fallback;
import com.hmall.api.client.ItemClient;
import com.hmall.api.dto.ItemDTO;
import com.hmall.api.dto.OrderDetailDTO;
import com.hmall.common.exception.BizIllegalException;
import com.hmall.common.utils.CollUtils;
import lombok.extern.slf4j.Slf4j;
import org.springframework.cloud.openfeign.FallbackFactory;
import java.util.Collection;
import java.util.List;
@Slf4j
public class ItemClientFallback implements FallbackFactory<ItemClient> {
    @Override
    public ItemClient create(Throwable cause) {
        return new ItemClient() {
            @Override
            public List<ItemDTO> queryItemByIds(Collection<Long> ids) {
                log.error("远程调用ItemClient#queryItemByIds方法出现异常,参数:{}", ids, cause);
                // 查询购物车允许失败,查询失败,返回空集合
                return CollUtils.emptyList();
            }
            @Override
            public void deductStock(List<OrderDetailDTO> items) {
                // 库存扣减业务需要触发事务回滚,查询失败,抛出异常
                throw new BizIllegalException(cause);
            }
        };
    }
}

image.gif

步骤二:在hm-api模块中的com.hmall.api.config.DefaultFeignConfig类中将ItemClientFallback注册为一个Bean

image.gif 编辑

步骤三:在hm-api模块中的ItemClient接口中使用ItemClientFallbackFactory

image.gif 编辑

重启后,再次测试,发现被限流的请求不再报错,走了降级逻辑

image.gif 编辑

但是未被限流的请求延时依然很高:

image.gif 编辑

导致最终的平局响应时间较长。

服务熔断

查询商品的RT较高(模拟的500ms),从而导致查询购物车的RT也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。

对于商品服务这种不太健康的接口,我们应该停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。当商品服务接口恢复正常后,再允许调用。这其实就是断路器的工作模式了。

Sentinel中的断路器不仅可以统计某个接口的慢请求比例,还可以统计异常请求比例。当这些比例超出阈值时,就会熔断该接口,即拦截访问该接口的一切请求,降级处理;当该接口恢复正常时,再放行对于该接口的请求。

断路器的工作状态切换有一个状态机来控制:

image.gif 编辑

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态持续一段时间后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
  • 请求成功:则切换到closed状态
  • 请求失败:则切换到open状态

我们可以在控制台通过点击簇点后的熔断按钮来配置熔断策略:

image.gif 编辑

在弹出的表格中这样填写:

image.gif 编辑

这种是按照慢调用比例来做熔断,上述配置的含义是:

  • RT超过200毫秒的请求调用就是慢调用
  • 统计最近1000ms内的最少5次请求,如果慢调用比例不低于0.5,则触发熔断
  • 熔断持续时长20s

配置完成后,再次利用Jemeter测试,可以发现:

image.gif 编辑

在一开始一段时间是允许访问的,后来触发熔断后,查询商品服务的接口通过QPS直接为0,所有请求都被熔断了。而查询购物车的本身并没有受到影响。

此时整个购物车查询服务的平均RT影响不大:

image.gif 编辑

分布式事务

首先我们看看项目中的下单业务整体流程:

image.gif 编辑

由于订单、购物车、商品分别在三个不同的微服务,而每个微服务都有自己独立的数据库,因此下单过程中就会跨多个数据库完成业务。而每个微服务都会执行自己的本地事务:

  • 交易服务:下单事务
  • 购物车服务:清理购物车事务
  • 库存服务:扣减库存事务

整个业务中,各个本地事务是有关联的。因此每个微服务的本地事务,也可以称为分支事务。多个有关联的分支事务一起就组成了全局事务。我们必须保证整个全局事务同时成功或失败。

我们知道每一个分支事务就是传统的单体事务,都可以满足ACID特性,但全局事务跨越多个服务、多个数据库,是否还能满足呢?

我们来做一个测试,先进入购物车页面:

image.gif 编辑

目前有4个购物车,然结算下单,进入订单结算页面:

image.gif 编辑

然后将购物车中某个商品的库存修改为0

image.gif 编辑

然后,提交订单,最终因库存不足导致下单失败:

image.gif 编辑

然后我们去查看购物车列表,发现购物车数据依然被清空了,并未回滚:

image.gif 编辑

事务并未遵循ACID的原则,归其原因就是参与事务的多个子业务在不同的微服务,跨越了不同的数据库。虽然每个单独的业务都能在本地遵循ACID,但是它们互相之间没有感知,不知道有人失败了,无法保证最终结果的统一,也就无法遵循ACID的事务特性了。

这就是分布式事务问题,出现以下情况之一就可能产生分布式事务问题:

  • 业务跨多个服务实现
  • 业务跨多个数据源实现

接下来这一章我们就一起来研究下如何解决分布式事务问题。

认识Seata

解决分布式事务的方案有很多,但实现起来都比较复杂,因此我们一般会使用开源的框架来解决分布式事务问题。在众多的开源分布式事务框架中,功能最完善、使用最多的就是阿里巴巴在2019年开源的Seata了。

Seata 是什么? | Apache Seata

其实分布式事务产生的一个重要原因,就是参与事务的多个分支事务互相无感知,不知道彼此的执行状态。因此解决分布式事务的思想非常简单:

就是找一个统一的事务协调者,与多个分支事务通信,检测每个分支事务的执行状态,保证全局事务下的每一个分支事务同时成功或失败即可。大多数的分布式事务框架都是基于这个理论来实现的。

Seata也不例外,在Seata的事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。
  • TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。
  • RM (Resource Manager) - 资源管理器:管理分支事务,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

Seata的工作架构如图所示:

image.gif 编辑

其中,TMRM可以理解为Seata的客户端部分,引入到参与事务的微服务依赖中即可。将来TMRM就会协助微服务,实现本地分支事务与TC之间交互,实现事务的提交或回滚。

TC服务则是事务协调中心,是一个独立的微服务,需要单独部署。

部署TC服务

准备数据库表

Seata支持多种存储模式,但考虑到持久化的需要,我们一般选择基于数据库存储。我已经把seata-tc.sql放到文件包里了,请大家下载,下载后导入数据库表:

准备配置文件

下载包准备了一个seata目录,其中包含了seata运行时所需要的配置文件:

其中包含中文注释,大家可以自行阅读。

我们将整个seata文件夹拷贝到虚拟机的/root目录:

Docker部署

需要注意,要确保nacos、mysql都在hm-net网络中。如果某个容器不再hm-net网络,可以参考下面的命令将某容器加入指定网络:

docker network connect [网络名] [容器名]

在虚拟机的/root目录执行下面的命令:

docker run --name seata \

-p 8099:8099 \

-p 7099:7099 \

-e SEATA_IP=192.168.150.101 \

-v ./seata:/seata-server/resources \

--privileged=true \

--network hm-net \

-d \

seataio/seata-server:1.5.2

微服务集成Seata

参与分布式事务的每一个微服务都需要集成Seata,我们以trade-service为例。

引入依赖

<!--统一配置管理-->
  <dependency>
      <groupId>com.alibaba.cloud</groupId>
      <artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
  </dependency>
  <!--读取bootstrap文件-->
  <dependency>
      <groupId>org.springframework.cloud</groupId>
      <artifactId>spring-cloud-starter-bootstrap</artifactId>
  </dependency>
  <!--seata-->
  <dependency>
      <groupId>com.alibaba.cloud</groupId>
      <artifactId>spring-cloud-starter-alibaba-seata</artifactId>
  </dependency>

image.gif

改造配置

首先在nacos上添加一个共享的seata配置,命名为shared-seata.yaml

image.gif 编辑

内容如下:

seata:
  registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
    type: nacos # 注册中心类型 nacos
    nacos:
      server-addr: 192.168.150.101:8848 # nacos地址
      namespace: "" # namespace,默认为空
      group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
      application: seata-server # seata服务名称
      username: nacos
      password: nacos
  tx-service-group: hmall # 事务组名称
  service:
    vgroup-mapping: # 事务组与tc集群的映射关系
      hmall: "default"

image.gif

然后,改造trade-service模块,添加bootstrap.yaml

内容如下:

spring:
  application:
    name: trade-service # 服务名称
  profiles:
    active: dev
  cloud:
    nacos:
      server-addr: 192.168.150.101 # nacos地址
      config:
        file-extension: yaml # 文件后缀名
        shared-configs: # 共享配置
          - dataId: shared-jdbc.yaml # 共享mybatis配置
          - dataId: shared-log.yaml # 共享日志配置
          - dataId: shared-swagger.yaml # 共享日志配置
          - dataId: shared-seata.yaml # 共享seata配置

image.gif

可以看到这里加载了共享的seata配置。

然后改造application.yaml文件,内容如下:

server:
  port: 8085
feign:
  okhttp:
    enabled: true # 开启OKHttp连接池支持
  sentinel:
    enabled: true # 开启Feign对Sentinel的整合
hm:
  swagger:
    title: 交易服务接口文档
    package: com.hmall.trade.controller
  db:
    database: hm-trade

image.gif

参考上述办法分别改造hm-carthm-item两个微服务模块。

添加数据库表

seata的客户端在解决分布式事务的时候需要记录一些中间数据,保存在数据库中。因此我们要先准备一个这样的表。

是资料包里的seata-at.sql文件,把seata-at.sql分别文件导入hm-trade、hm-cart、hm-item三个数据库中:

OK,至此为止,微服务整合的工作就完成了。可以参考上述方式对hm-itemhm-cart模块完成整合改造。

测试

接下来就是测试的分布式事务的时候了。

我们找到trade-service模块下的com.hmall.trade.service.impl.OrderServiceImpl类中的createOrder方法,也就是下单业务方法。

将其上的@Transactional注解改为Seata提供的@GlobalTransactional

image.gif 编辑

@GlobalTransactional注解就是在标记事务的起点,将来TM就会基于这个方法判断全局事务范围,初始化全局事务。

我们重启trade-serviceitem-servicecart-service三个服务。再次测试,发现分布式事务的问题解决了!

那么,Seata是如何解决分布式事务的呢?

XA模式

Seata支持四种不同的分布式事务解决方案:

  • XA
  • TCC
  • AT
  • SAGA

这里我们以XA模式和AT模式来给大家讲解其实现原理。

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

两阶段提交

A是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

正常情况:

image.gif 编辑

异常情况:

image.gif 编辑

一阶段:

  • 事务协调者通知每个事务参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
  • 如果一阶段都成功,则通知所有事务参与者,提交事务
  • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:

image.gif 编辑

RM一阶段的工作:

  1. 注册分支事务到TC
  2. 执行分支业务sql但不提交
  3. 报告执行状态到TC

TC二阶段的工作:

  1. TC检测各分支事务执行状态
  1. 如果都成功,通知所有RM提交事务
  2. 如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则
  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
  • 依赖关系型数据库实现事务

实现步骤

首先,我们要在配置文件中指定要采用的分布式事务模式。我们可以在Nacos中的共享shared-seata.yaml配置文件中设置

seata:

 data-source-proxy-mode: XA

其次,我们要利用@GlobalTransactional标记分布式事务的入口方法:

image.gif 编辑

AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

Seata的AT模型

基本流程图:

image.gif 编辑

阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

流程梳理

我们用一个真实的业务来梳理下AT模式的原理。

比如,现在有一个数据库表,记录用户余额:

id money

1

100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

一阶段

  1. TM发起并注册全局事务到TC
  2. TM调用分支事务
  3. 分支事务准备执行业务SQL
  4. RM拦截业务SQL,根据where条件查询原始数据,形成快照。

{

 "id": 1, "money": 100

}

  1. RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90
  2. RM报告本地事务状态给TC

二阶段

  1. TM通知TC事务结束
  2. TC检查分支事务状态
  1. 如果都成功,则立即删除快照
  2. 如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

流程图:

image.gif 编辑

AT与XA的区别

AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
  • XA模式强一致;AT模式最终一致

可见,AT模式使用起来更加简单,无业务侵入,性能更好。因此企业90%的分布式事务都可以用AT模式来解决。


目录
相关文章
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
128 3
|
3月前
|
存储 数据可视化 Java
基于MicrometerTracing门面和Zipkin实现集成springcloud2023的服务追踪
Sleuth将会停止维护,Sleuth最新版本也只支持springboot2。作为替代可以使用MicrometerTracing在微服务中作为服务追踪的工具。
186 1
|
20天前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
5月前
|
存储 监控 负载均衡
检索服务elasticsearch分布式结构
【8月更文挑战第22天】
58 3
|
11天前
|
Java 关系型数据库 数据库
微服务SpringCloud分布式事务之Seata
SpringCloud+SpringCloudAlibaba的Seata实现分布式事务,步骤超详细,附带视频教程
32 1
|
5月前
|
资源调度 Java 调度
Spring Cloud Alibaba 集成分布式定时任务调度功能
定时任务在企业应用中至关重要,常用于异步数据处理、自动化运维等场景。在单体应用中,利用Java的`java.util.Timer`或Spring的`@Scheduled`即可轻松实现。然而,进入微服务架构后,任务可能因多节点并发执行而重复。Spring Cloud Alibaba为此发布了Scheduling模块,提供轻量级、高可用的分布式定时任务解决方案,支持防重复执行、分片运行等功能,并可通过`spring-cloud-starter-alibaba-schedulerx`快速集成。用户可选择基于阿里云SchedulerX托管服务或采用本地开源方案(如ShedLock)
159 1
|
26天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
58 11
|
2月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
74 3
|
3月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
4月前
|
存储 NoSQL Redis
SpringCloud基础7——Redis分布式缓存,RDB,AOF持久化+主从+哨兵+分片集群
Redis持久化、RDB和AOF方案、Redis主从集群、哨兵、分片集群、散列插槽、自动手动故障转移
SpringCloud基础7——Redis分布式缓存,RDB,AOF持久化+主从+哨兵+分片集群