"轻量级微调推理框架SWIFT:大模型时代的速度革命,让你秒变AI部署高手!"

简介: 【8月更文挑战第17天】随着AI技术的发展,大模型如GPT-3和BERT引领风潮,但其部署与推理速度面临挑战。为此,魔搭社区推出了SWIFT(Simple Weight-Integrated Fine-Tuning)框架,它采用轻量级微调技术,实现模型参数压缩与加速,确保大模型能在移动端和边缘设备上高效运行。SWIFT具备四大特点:创新微调方法减少训练参数;内置优化策略提高推理速度;跨平台支持便于部署;兼容主流预训练模型。通过示例可见,从加载预训练模型到模型的微调、评估及导出,SWIFT简化了工作流程,降低了大模型的应用门槛,促进了AI技术的实际应用。

随着人工智能技术的飞速发展,大模型逐渐成为业界关注的焦点。从GPT-3到BERT,再到最近的ChatGPT,这些大模型在自然语言处理、计算机视觉等领域取得了显著成果。然而,在享受大模型带来的便利的同时,我们也面临着模型部署和推理速度的挑战。在此背景下,魔搭社区推出了一款轻量级微调推理框架——SWIFT,犹如一只雨燕,助力开发者高效地进行模型部署。
SWIFT(Simple Weight-Integrated Fine-Tuning)框架,旨在解决大模型在移动端和边缘设备上的部署难题。它通过轻量级微调技术,实现了模型参数的压缩和加速,使得大模型在保持较高性能的同时,能够快速推理。
一、SWIFT框架特点

  1. 轻量级微调:SWIFT框架采用了一种创新的微调方法,通过在预训练模型的基础上添加少量可训练参数,实现了对模型的高效调整。
  2. 快速推理:框架内置了多种优化策略,如模型剪枝、量化等,有效降低了模型复杂度,提高了推理速度。
  3. 易于部署:SWIFT框架支持多种平台(如Android、iOS等),方便开发者将模型部署到各类设备。
  4. 高度兼容:框架兼容主流预训练模型,如BERT、GPT等,开发者可根据需求灵活选择。
    二、SWIFT框架应用示例
    以下是一个基于SWIFT框架的文本分类任务示例:
  5. 导入相关库
    import torch
    from transformers import BertTokenizer, BertModel
    from swift import SWIFT
    
  6. 加载预训练模型和Tokenizer
    model_name = 'bert-base-chinese'
    tokenizer = BertTokenizer.from_pretrained(model_name)
    model = BertModel.from_pretrained(model_name)
    
  7. 初始化SWIFT框架
    swift = SWIFT(model, num_labels=2)
    
  8. 加载数据集并进行微调
    train_data = [...]  # 加载训练数据
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)
    swift.train(train_loader, epochs=3)
    
  9. 模型评估
    val_data = [...]  # 加载验证数据
    val_loader = torch.utils.data.DataLoader(val_data, batch_size=32, shuffle=False)
    accuracy = swift.evaluate(val_loader)
    print(f'Validation Accuracy: {accuracy}')
    
  10. 模型部署
    swift.export('swift_model.pth')  # 导出模型
    
    通过以上步骤,我们使用SWIFT框架完成了一个文本分类任务的微调、评估和部署。在实际应用中,开发者可根据具体需求调整模型结构和参数。
    三、总结
    大模型时代,SWIFT框架犹如一只雨燕,为开发者提供了轻量级微调推理的解决方案。它不仅降低了模型部署的门槛,还提高了推理速度,助力人工智能技术在更多场景落地。未来,魔搭社区将继续优化SWIFT框架,为开发者带来更便捷、高效的体验。
相关文章
|
26天前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
243 7
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
12天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
57 3
|
22天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
91 2
|
15天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
48 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
8天前
|
人工智能 知识图谱
轻松搭建AI版“谁是卧底”游戏,muAgent框架让知识图谱秒变编排引擎,支持复杂推理+在线协同
蚂蚁集团推出muAgent,兼容现有市面各类Agent框架,同时可实现复杂推理、在线协同、人工交互、知识即用四大核心差异技术功能。
22 2
|
11天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
19天前
|
人工智能 JSON 自然语言处理
基于文档智能&RAG搭建更懂业务的AI大模型
本文介绍了一种结合文档智能和检索增强生成(RAG)技术,构建强大LLM知识库的方法。通过清洗文档内容、向量化处理和特定Prompt,提供足够的上下文信息,实现对企业级文档的智能问答。文档智能(Document Mind)能够高效解析多种文档格式,确保语义的连贯性和准确性。整个部署过程简单快捷,适合处理复杂的企业文档,提升信息提取和利用效率。
|
16天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
73 4
下一篇
无影云桌面