大数据如何在商业银行战略规划中发挥作用

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

大数据如何在商业银行战略规划中发挥作用

摘 要:商业银行战略规划的制定,需要海量数据,但目前,行外数据基本未被纳入银行数据库,行内数据受数据安全等制度约束,使用不足。未来大数据要在商业银行战略领域发挥价值,需要大数据服务外包商,不仅提供各种基础数据,而且提供大数据人才。

近两年,大数据如何应用一直是各方探索的重点。所谓大数据,是在计算机存储能力、计算能力、计算技术、计算速度大幅增长的基础上,对海量数据复杂处理的产物。大数据常常被定义为海量数据“需要新处理模式”才能发挥巨大价值,这也说明其是计算机技术高速发展的产物。

对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。

对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。

银行战略规划需要海量数据

从逻辑上讲,银行管理中没有哪个板块比战略规划更需要大数据。世界经济形势、各国货币和财政政策、政治地缘关系、大宗商品价格、国际贸易状况、局部战争等国际问题,都可能影响中国进出口贸易,影响国内企业经营状况、影响某个产业的发展趋势,商业银行在制定战略规划涉及到是否走出国门、选择战略业务方向时,就不能不考虑国际政治、经济问题,而且银行规模越大,其意义也越大。

同样的问题反映在国内,则需要关注中国经济周期、经济形势、国家发展战略、产业政策、货币政策、财政政策、区域政策、地区间经济差异、各行各业发展现状及趋势等。一个商业银行如果制定三年、五年甚至更长时期的发展战略,这些问题显然不能不考虑。

银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。

银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。

现状:行内数据相对完善 行外数据基本未入库

理想很丰满,现实总是很骨感。制定商业银行战略时,国外、国内、行内的数据显然越多越好,而现实情况是,商业银行很少将行外数据纳入其信息规划主流数据仓库,行外数据经常以原始数据来源格式存储在战略规划制定部门的数据文件夹中,有时还要根据需要到付费数据服务商处查询。

产生这种情况的原因有很多:

首先,数据范围广。对战略制定来说,数据是“韩信点兵、多多益善”,恰恰是这个多多益善,导致商业银行很难自己构建数据库来满足战略规划制定;

其次,数据不规范。需要的数据越多,数据的规范性越差,导致图片、视频、音频、文字等各种数据格式都有,将各种格式的数据归类、整理、清洗并建模,获得有价值的决策支持信息,难度非常大;

第三,单体数据价值小。对战略规划来说,每个信息都有价值,但具体到各类数据,其价值却可能不大,因此,在数据采集时,要获得信息管理部门的同意和支持,并整理入库的难度非常大;

第四,成本问题。虽然理论上讲,大数据分析是有价值的,但现实是,成本是显性的,收益是隐性的,特别是战略决策虽然基于大量的数据分析,但最终的决策却存在很大的主观性,定性的判断、领导的判断在战略方向的选择上,处于非常重要的位置。因此,成本问题也是约束大数据在战略决策中价值发挥的“拦路虎”。

综合来看,虽然大数据概念产生和广泛使用已有一定时间,但商业银行战略规划制定过程中的作用并不大。行外数据基本与数据库无缘,行内数据的完整性、有效性虽然完善了很多,但由于数据安全等制度约束,数据使用的便捷性和灵活性还存在很大不足。

未来前景:大数据外包服务商和人才外包

大数据在商业银行战略制定中的价值开发,必须考虑商业银行的特性。一方面,商业银行从大到小,规模相差几千倍甚至上万倍,不同等级的商业银行在成本投入、人才储备等方面的差距也很大;另一方面,不同类型的商业银行,对数据需求的着力点也不一样,大型商业银行更看重国际形势、国内形势、行业趋势,小银行更看重国内形势、区域特征。





====================================分割线================================


本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
26198
分享
相关文章
大数据项目管理:从规划到执行的全景指南
大数据项目管理:从规划到执行的全景指南
37 4
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
大数据集群规划的一点建议
大数据集群规划的一点建议
大数据集群资源预估规划【适用于面试与工作集群规划】
大数据集群资源预估规划【适用于面试与工作集群规划】
707 0
大数据集群资源预估规划【适用于面试与工作集群规划】
Paper Time|开放式时空大数据助力智能公交路线规划
Paper Time|开放式时空大数据助力智能公交路线规划
1027 0
Paper Time|开放式时空大数据助力智能公交路线规划
阿里云大数据平台 -时序数据集成架构与存储规划
阿里云大数据平台集成时序数据的架构与存储规划
1375 0
阿里云大数据平台 -时序数据集成架构与存储规划
【行业|分析】大数据对于银行七大应用
大数据和Hadoop技术非常强大,可帮助金融机构在市场上保持领先。运用了这些技术就能看到他们传输的结果。
1990 0