【Flink on YARN + CDC 3.0】神操作!看完这篇教程,你也能成为数据流处理高手!从零开始,一步步教会你在Flink on YARN模式下如何配置Debezium CDC 3.0,让你的数据库变更数据瞬间飞起来!

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,基础系列 4核8GB
简介: 【8月更文挑战第15天】随着Apache Flink的普及,企业广泛采用Flink on YARN部署流处理应用,高效利用集群资源。变更数据捕获(CDC)工具在现代数据栈中至关重要,能实时捕捉数据库变化并转发给下游系统处理。本文以Flink on YARN为例,介绍如何在Debezium CDC 3.0中配置MySQL连接器,实现数据流处理。首先确保YARN上已部署Flink集群,接着安装Debezium MySQL连接器并配置Kafka Connect。最后,创建Flink任务消费变更事件并提交任务到Flink集群。通过这些步骤,可以构建出从数据库变更到实时处理的无缝数据管道。

随着Apache Flink的广泛应用,越来越多的企业开始采用Flink on YARN模式来部署流处理应用,以充分利用集群资源。而在现代数据栈中,变更数据捕获(Change Data Capture,简称CDC)工具扮演着重要角色,它能够实时捕捉数据库中的变化数据,并将其转发至下游系统进行处理。本文将以部署Flink on YARN为例,探讨如何在Debezium CDC 3.0中进行相关配置,以确保数据流处理的顺利进行。

首先,假设我们已经在YARN集群上成功部署了Flink集群。接下来,为了能够使用Debezium CDC 3.0来捕获数据库变更事件并将这些事件发送给Flink进行处理,我们需要进行一系列配置。

步骤一:安装Debezium

Debezium是一个开源的分布式平台,用于流式捕获数据库的变更事件。在正式使用之前,确保Debezium已经安装并且配置正确。Debezium支持多种数据库,如MySQL、PostgreSQL等。以MySQL为例,首先需要在MySQL服务器上安装Debezium连接器。

安装MySQL连接器

# 下载Debezium MySQL连接器
wget https://repo1.maven.org/maven2/io/debezium/debezium-connector-mysql/1.6.1.Final/debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 解压文件
tar -xzf debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 将解压后的文件夹复制到Kafka Connect插件目录
sudo cp -r debezium-connector-mysql-1.6.1.Final /usr/share/kafka/plugins/

步骤二:配置Kafka Connect

Debezium通过Kafka Connect来捕获数据库的变更事件。因此,需要在Kafka Connect中添加Debezium连接器的配置。

配置Kafka Connect

name: mysql-debezium-source
config:
  connector.class: io.debezium.connector.mysql.MySqlSourceConnector
  tasks.max: 1
  database.hostname: localhost
  database.port: 3306
  database.user: debezium
  database.password: debezium
  database.server.id: 12345
  database.server.name: mydatabase
  database.whitelist: testdb
  database.history.kafka.bootstrap.servers: localhost:9092
  database.history.kafka.topic: schema-changes.testdb

步骤三:配置Flink任务

一旦Debezium连接器捕获到数据库的变更事件,下一步就是将这些事件导入Flink进行处理。这一步涉及到Flink任务的配置。

创建Flink任务

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;

public class FlinkDebeziumExample {
   

    public static void main(String[] args) throws Exception {
   
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
                .setBootstrapServers("localhost:9092")
                .setTopics("testdb.public.users")
                .setGroupId("flink-consumer-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStream<String> sourceStream = env.addSource(kafkaSource)
                .assignTimestampsAndWatermarks(WatermarkStrategy.<String>forMonotonousTimestamps().build());

        sourceStream.print();

        env.execute("Flink Debezium Example");
    }
}

步骤四:启动Flink任务

最后,确保Flink集群已启动,然后提交上述Flink任务。

# 编译项目
mvn clean package

# 提交Flink任务
flink run target/flink-debezium-example-1.0.jar

通过以上步骤,我们成功地在Debezium CDC 3.0中配置了MySQL连接器,并且创建了一个简单的Flink任务来消费从Debezium接收到的变更事件。这为构建实时数据管道提供了一个坚实的基础。在实际生产环境中,还需要根据具体需求进行更详细的配置调整,例如增加错误处理逻辑、数据转换等高级功能。

综上所述,通过合理配置Debezium和Flink,我们可以实现从数据库变更事件到实时数据处理的无缝衔接,进而构建出高效可靠的数据处理流程。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
5月前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
6月前
|
存储 数据管理 数据库
数据字典是什么?和数据库、数据仓库有什么关系?
在数据处理中,你是否常困惑于字段含义、指标计算或数据来源?数据字典正是解答这些问题的关键工具,它清晰定义数据的名称、类型、来源、计算方式等,服务于开发者、分析师和数据管理者。本文详解数据字典的定义、组成及其与数据库、数据仓库的关系,助你夯实数据基础。
数据字典是什么?和数据库、数据仓库有什么关系?
|
5月前
|
人工智能 Java 关系型数据库
使用数据连接池进行数据库操作
使用数据连接池进行数据库操作
165 11
|
6月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL数据库的WAL日志与数据写入的过程
PostgreSQL中的WAL(预写日志)是保证数据完整性的关键技术。在数据修改前,系统会先将日志写入WAL,确保宕机时可通过日志恢复数据。它减少了磁盘I/O,提升了性能,并支持手动切换日志文件。WAL文件默认存储在pg_wal目录下,采用16进制命名规则。此外,PostgreSQL提供pg_waldump工具解析日志内容。
619 0
|
5月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
442 158
|
5月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
5月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
1035 152
|
5月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
812 156
|
5月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
419 156

热门文章

最新文章