【Flink on YARN + CDC 3.0】神操作!看完这篇教程,你也能成为数据流处理高手!从零开始,一步步教会你在Flink on YARN模式下如何配置Debezium CDC 3.0,让你的数据库变更数据瞬间飞起来!

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 【8月更文挑战第15天】随着Apache Flink的普及,企业广泛采用Flink on YARN部署流处理应用,高效利用集群资源。变更数据捕获(CDC)工具在现代数据栈中至关重要,能实时捕捉数据库变化并转发给下游系统处理。本文以Flink on YARN为例,介绍如何在Debezium CDC 3.0中配置MySQL连接器,实现数据流处理。首先确保YARN上已部署Flink集群,接着安装Debezium MySQL连接器并配置Kafka Connect。最后,创建Flink任务消费变更事件并提交任务到Flink集群。通过这些步骤,可以构建出从数据库变更到实时处理的无缝数据管道。

随着Apache Flink的广泛应用,越来越多的企业开始采用Flink on YARN模式来部署流处理应用,以充分利用集群资源。而在现代数据栈中,变更数据捕获(Change Data Capture,简称CDC)工具扮演着重要角色,它能够实时捕捉数据库中的变化数据,并将其转发至下游系统进行处理。本文将以部署Flink on YARN为例,探讨如何在Debezium CDC 3.0中进行相关配置,以确保数据流处理的顺利进行。

首先,假设我们已经在YARN集群上成功部署了Flink集群。接下来,为了能够使用Debezium CDC 3.0来捕获数据库变更事件并将这些事件发送给Flink进行处理,我们需要进行一系列配置。

步骤一:安装Debezium

Debezium是一个开源的分布式平台,用于流式捕获数据库的变更事件。在正式使用之前,确保Debezium已经安装并且配置正确。Debezium支持多种数据库,如MySQL、PostgreSQL等。以MySQL为例,首先需要在MySQL服务器上安装Debezium连接器。

安装MySQL连接器

# 下载Debezium MySQL连接器
wget https://repo1.maven.org/maven2/io/debezium/debezium-connector-mysql/1.6.1.Final/debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 解压文件
tar -xzf debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 将解压后的文件夹复制到Kafka Connect插件目录
sudo cp -r debezium-connector-mysql-1.6.1.Final /usr/share/kafka/plugins/

步骤二:配置Kafka Connect

Debezium通过Kafka Connect来捕获数据库的变更事件。因此,需要在Kafka Connect中添加Debezium连接器的配置。

配置Kafka Connect

name: mysql-debezium-source
config:
  connector.class: io.debezium.connector.mysql.MySqlSourceConnector
  tasks.max: 1
  database.hostname: localhost
  database.port: 3306
  database.user: debezium
  database.password: debezium
  database.server.id: 12345
  database.server.name: mydatabase
  database.whitelist: testdb
  database.history.kafka.bootstrap.servers: localhost:9092
  database.history.kafka.topic: schema-changes.testdb

步骤三:配置Flink任务

一旦Debezium连接器捕获到数据库的变更事件,下一步就是将这些事件导入Flink进行处理。这一步涉及到Flink任务的配置。

创建Flink任务

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;

public class FlinkDebeziumExample {
   

    public static void main(String[] args) throws Exception {
   
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
                .setBootstrapServers("localhost:9092")
                .setTopics("testdb.public.users")
                .setGroupId("flink-consumer-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStream<String> sourceStream = env.addSource(kafkaSource)
                .assignTimestampsAndWatermarks(WatermarkStrategy.<String>forMonotonousTimestamps().build());

        sourceStream.print();

        env.execute("Flink Debezium Example");
    }
}

步骤四:启动Flink任务

最后,确保Flink集群已启动,然后提交上述Flink任务。

# 编译项目
mvn clean package

# 提交Flink任务
flink run target/flink-debezium-example-1.0.jar

通过以上步骤,我们成功地在Debezium CDC 3.0中配置了MySQL连接器,并且创建了一个简单的Flink任务来消费从Debezium接收到的变更事件。这为构建实时数据管道提供了一个坚实的基础。在实际生产环境中,还需要根据具体需求进行更详细的配置调整,例如增加错误处理逻辑、数据转换等高级功能。

综上所述,通过合理配置Debezium和Flink,我们可以实现从数据库变更事件到实时数据处理的无缝衔接,进而构建出高效可靠的数据处理流程。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
168 61
|
28天前
|
数据库连接 Linux Shell
Linux下ODBC与 南大通用GBase 8s数据库的无缝连接配置指南
本文详细介绍在Linux系统下配置GBase 8s数据库ODBC的过程,涵盖环境变量设置、ODBC配置文件编辑及连接测试等步骤。首先配置数据库环境变量如GBASEDBTDIR、PATH等,接着修改odbcinst.ini和odbc.ini文件,指定驱动路径、数据库名称等信息,最后通过catalog.c工具或isql命令验证ODBC连接是否成功。
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
91 9
|
1月前
|
安全 Nacos 数据库
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改。本文详细探讨了这一问题的原因及解决方案,包括限制公网访问、使用HTTPS、强化数据库安全、启用访问控制、监控和审计等步骤,帮助开发者确保服务的安全运行。
49 3
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1247 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
158 56
|
5月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
873 7
阿里云实时计算Flink在多行业的应用和实践
|
4月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。