用户态协议栈03-icmp实现

简介: 用户态协议栈03-icmp实现

icmp协议

ICMP(Internet Control Message Protocol)Internet控制报文协议。它是TCP/IP协议簇的一个子协议,用于在IP主机路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但是对于用户数据的传递起着重要的作用。 [1]

ICMP使用IP的基本支持,就像它是一个更高级别的协议,但是,ICMP实际上是IP的一个组成部分,必须由每个IP模块实现。

icmp报文结构

打包icmp

打包其实都是一个原理,直接放代码了:

static void dpdk_encode_icmp_pkt(uint8_t* msg, uint8_t* dst_mac, uint32_t sip, uint32_t dip, uint16_t id, uint16_t seq) {
    struct rte_ether_hdr* eth = (struct rte_ether_hdr*)msg;
    rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
    rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
    eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
    struct rte_ipv4_hdr* ip = (struct rte_ipv4_hdr*)(eth + 1);
    ip->version_ihl = 0x45;
    ip->type_of_service = 0;
    ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
    ip->packet_id = 0;
    ip->fragment_offset = 0;
    ip->time_to_live = 64;
    ip->next_proto_id = IPPROTO_ICMP;
    ip->dst_addr = dip;
    ip->src_addr = sip;
    ip->hdr_checksum = 0;
    ip->hdr_checksum = rte_ipv4_cksum(ip);
    struct rte_icmp_hdr* icmp = (struct rte_icmp_hdr*)(ip + 1);
    icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
    icmp->icmp_code = 0;
    icmp->icmp_ident = id;
    icmp->icmp_seq_nb = seq;
    icmp->icmp_cksum = 0;
    icmp->icmp_cksum = rte_icmp_cksum((uint16_t*)icmp, sizeof(struct rte_icmp_hdr));
}
static struct rte_mbuf* dpdk_send_icmp(struct rte_mempool* mbuf_pool, uint8_t* dst_mac, uint32_t sip,  uint32_t dip, uint16_t id, uint16_t seq) {
    struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
    if(!mbuf) {
        rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
    }
    uint16_t total_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
    mbuf->pkt_len = total_len;
    mbuf->data_len = total_len;
    uint8_t* pkt = rte_pktmbuf_mtod(mbuf, uint8_t*);
    dpdk_encode_icmp_pkt(pkt, dst_mac, sip, dip, id, seq);
    return mbuf;
}

这里我们依然是做的基础的回复包,效果是使用物理机进行ping操作的时候,可以收到数据返回,所以我们只是打了一个RTE_IP_ICMP_ECHO_REPLY的包。

icmp校验

由于DPDK中好像没有专门的ICMP校验接口,这里我们参考文档自己写一个,文档我会放在最后:

static uint16_t rte_icmp_cksum(uint16_t* addr, int count) {
    long sum = 0;
    while (count > 1)
    {
        sum += *(unsigned short*)addr++;
        count -= 2;
    }
    if(count > 0)
        sum += *(unsigned char*)addr;
    while(sum >> 16)
        sum = (sum & 0xffff) + (sum >> 16);
    return ~sum;
}

完整代码

#include <rte_eal.h>
#include <rte_ethdev.h>
#include <stdio.h>
#include <arpa/inet.h>
#define MBUF_LEN    (4096-1)
#define MBUF_SIZE   64
static const int gDpdkPortId = 0;
#define MAKE_IPV4_ADDR(a, b, c, d)  (a + (b<<8) + (c<<16) + (d<<24))
uint32_t gLocalIp = MAKE_IPV4_ADDR(192, 168, 1, 185);
uint32_t gSrcIp;
uint32_t gDstIp;
uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
uint8_t gDstMac[RTE_ETHER_ADDR_LEN];
uint16_t gSrcPort;
uint16_t gDstPort;
struct rte_eth_conf default_port_info = {
    .rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN},
};
static void dpdk_port_init(struct rte_mempool* mbuf_pool) {
    uint16_t sys_port_count = rte_eth_dev_count_avail();
    if(sys_port_count == 0)
        rte_exit(EXIT_FAILURE, "Could not support port\n");
    
    struct rte_eth_dev_info dev_info;
    rte_eth_dev_info_get(gDpdkPortId, &dev_info);
    const unsigned nb_rx_queue = 1;
    const unsigned nb_tx_queue = 1;
    struct rte_eth_conf port_conf = default_port_info;
    rte_eth_dev_configure(gDpdkPortId, nb_rx_queue, nb_tx_queue, &port_conf);
    if(rte_eth_rx_queue_setup(gDpdkPortId, 0, 128, rte_eth_dev_socket_id(gDpdkPortId), NULL, mbuf_pool) < 0)
        rte_exit(EXIT_FAILURE, "Could not setup RX queue\n");
    struct rte_eth_txconf txconf = dev_info.default_txconf;
    txconf.offloads = default_port_info.rxmode.offloads;
    if(rte_eth_tx_queue_setup(gDpdkPortId, 0, 512, rte_eth_dev_socket_id(gDpdkPortId), &txconf) < 0)
        rte_exit(EXIT_FAILURE, "Could not setup TX queue\n");
    if(rte_eth_dev_start(gDpdkPortId) < 0)
        rte_exit(EXIT_FAILURE, "Could not start\n");
}
static void dpdk_encode_udp_pkt(uint8_t* msg, uint8_t* data, uint16_t total_len) {
    struct rte_ether_hdr* eth = (struct rte_ether_hdr*)msg;
    rte_memcpy(eth->d_addr.addr_bytes, gDstMac, RTE_ETHER_ADDR_LEN);
    rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
    eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
    struct rte_ipv4_hdr* ip = (struct rte_ipv4_hdr*)(eth + 1);
    ip->version_ihl = 0x45;
    ip->type_of_service = 0;
    ip->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
    ip->packet_id = 0;
    ip->fragment_offset = 0;
    ip->time_to_live = 64;
    ip->next_proto_id = IPPROTO_UDP;
    ip->dst_addr = gDstIp;
    ip->src_addr = gSrcIp;
    ip->hdr_checksum = 0;
    ip->hdr_checksum = rte_ipv4_cksum(ip);
    
    struct rte_udp_hdr* udp = (struct rte_udp_hdr*)(ip + 1);
    uint16_t length = total_len - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
    udp->dst_port = gDstPort;
    udp->src_port = gSrcIp;
    udp->dgram_len = htons(length);
    rte_memcpy((uint8_t*)(udp + 1), data, length);
    udp->dgram_cksum = 0;
    udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);
}
static  struct rte_mbuf* dpdk_send_udp(struct rte_mempool* mbuf_pool, uint8_t* data, uint16_t length) {
    struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
    if(!mbuf)
        rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
    uint16_t total_len = length + 42;
    mbuf->pkt_len = total_len;
    mbuf->data_len = total_len;
    uint8_t* pkt = rte_pktmbuf_mtod(mbuf, uint8_t*);
    dpdk_encode_udp_pkt(pkt, data, length);
    return mbuf;
}
static void dpdk_encode_arp_pkt(uint8_t* msg, uint8_t* dst_mac, uint32_t sip, uint32_t dip) {
    struct rte_ether_hdr* eth = (struct rte_ether_hdr*)(msg);
    rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
    rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
    eth->ether_type = htons(RTE_ETHER_TYPE_ARP);
    struct rte_arp_hdr* arp = (struct rte_arp_hdr*)(eth + 1);
    arp->arp_hardware = htons(1);
    arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
    arp->arp_plen = sizeof(uint32_t);
    arp->arp_hlen = RTE_ETHER_ADDR_LEN;
    arp->arp_opcode = htons(2);
    arp->arp_data.arp_sip = sip;
    arp->arp_data.arp_tip = dip;
    rte_memcpy(arp->arp_data.arp_sha.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
    rte_memcpy(arp->arp_data.arp_tha.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
}
static  struct rte_mbuf* dpdk_send_arp(struct rte_mempool* mbuf_pool, uint8_t* dst_mac, uint32_t sip, uint32_t dip) {
    struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
    if(!mbuf)
        rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
    uint16_t total_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);
    mbuf->pkt_len = total_len;
    mbuf->data_len = total_len;
    uint8_t* pkt = rte_pktmbuf_mtod(mbuf, uint8_t*);
    dpdk_encode_arp_pkt(pkt, dst_mac, sip, dip);
    return mbuf;
}
static uint16_t rte_icmp_cksum(uint16_t* addr, int count) {
    long sum = 0;
    while (count > 1)
    {
        sum += *(unsigned short*)addr++;
        count -= 2;
    }
    if(count > 0)
        sum += *(unsigned char*)addr;
    while(sum >> 16)
        sum = (sum & 0xffff) + (sum >> 16);
    return ~sum;
}
static void dpdk_encode_icmp_pkt(uint8_t* msg, uint8_t* dst_mac, uint32_t sip, uint32_t dip, uint16_t id, uint16_t seq) {
    struct rte_ether_hdr* eth = (struct rte_ether_hdr*)msg;
    rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
    rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
    eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
    struct rte_ipv4_hdr* ip = (struct rte_ipv4_hdr*)(eth + 1);
    ip->version_ihl = 0x45;
    ip->type_of_service = 0;
    ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
    ip->packet_id = 0;
    ip->fragment_offset = 0;
    ip->time_to_live = 64;
    ip->next_proto_id = IPPROTO_ICMP;
    ip->dst_addr = dip;
    ip->src_addr = sip;
    ip->hdr_checksum = 0;
    ip->hdr_checksum = rte_ipv4_cksum(ip);
    struct rte_icmp_hdr* icmp = (struct rte_icmp_hdr*)(ip + 1);
    icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
    icmp->icmp_code = 0;
    icmp->icmp_ident = id;
    icmp->icmp_seq_nb = seq;
    icmp->icmp_cksum = 0;
    icmp->icmp_cksum = rte_icmp_cksum((uint16_t*)icmp, sizeof(struct rte_icmp_hdr));
}
static struct rte_mbuf* dpdk_send_icmp(struct rte_mempool* mbuf_pool, uint8_t* dst_mac, uint32_t sip,  uint32_t dip, uint16_t id, uint16_t seq) {
    struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
    if(!mbuf) {
        rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
    }
    uint16_t total_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
    mbuf->pkt_len = total_len;
    mbuf->data_len = total_len;
    uint8_t* pkt = rte_pktmbuf_mtod(mbuf, uint8_t*);
    dpdk_encode_icmp_pkt(pkt, dst_mac, sip, dip, id, seq);
    return mbuf;
}
int main(int argc, char* argv[]) {
    if(rte_eal_init(argc, argv) < 0)
        rte_exit(EXIT_FAILURE, "Error with eal init\n");
    struct rte_mempool* mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", MBUF_LEN, 0, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
    if(!mbuf_pool)
        rte_exit(EXIT_FAILURE, "Error with mempool create\n");
    dpdk_port_init(mbuf_pool);
    rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr*)gSrcMac);
    while(1) {
        struct rte_mbuf* mbufs[MBUF_SIZE];
        int nb_pkt = rte_eth_rx_burst(gDpdkPortId, 0, mbufs, MBUF_SIZE);
        if(nb_pkt > MBUF_SIZE)
            rte_exit(EXIT_FAILURE, "Error withs pkt num\n");
        int i;
        for(i = 0; i < nb_pkt; i++) {
            struct rte_ether_hdr* eth = rte_pktmbuf_mtod(mbufs[i], struct rte_ether_hdr*);
            if(eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
                struct rte_arp_hdr* arp = rte_pktmbuf_mtod_offset(mbufs[i], struct rte_arp_hdr*, sizeof(struct rte_ether_hdr));
                struct in_addr addr;
                    addr.s_addr = arp->arp_data.arp_sip;
                    printf("arp-->src: %s ", inet_ntoa(addr));
                    addr.s_addr = arp->arp_data.arp_tip;
                    printf("dst: %s\n", inet_ntoa(addr));
                if(arp->arp_data.arp_tip == gLocalIp) {
                    struct rte_mbuf* txbuf = dpdk_send_arp(mbuf_pool, arp->arp_data.arp_sha.addr_bytes, gLocalIp, arp->arp_data.arp_sip);
                    rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
                    rte_pktmbuf_free(txbuf);
                    rte_pktmbuf_free(mbufs[i]);
                    txbuf = NULL;
                    mbufs[i] = NULL;
                }
                continue;
            }
            if(eth->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
                rte_pktmbuf_free(mbufs[i]);
                mbufs[i] = NULL;
                continue;
            }
            struct rte_ipv4_hdr* ip = rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr*, sizeof(struct rte_ether_hdr));
            if(ip->next_proto_id == IPPROTO_UDP) {
                struct rte_udp_hdr* udp = (struct rte_udp_hdr*)(ip + 1);
                rte_memcpy(gDstMac, eth->s_addr.addr_bytes, RTE_ETHER_ADDR_LEN);
                rte_memcpy(&gSrcIp, &ip->dst_addr, sizeof(uint32_t));
                rte_memcpy(&gDstIp, &ip->src_addr, sizeof(uint32_t));
                rte_memcpy(&gSrcPort, &udp->dst_port, sizeof(uint16_t));
                rte_memcpy(&gDstPort, &udp->src_port, sizeof(uint16_t));
                uint16_t len = ntohs(udp->dgram_len);
                *((char*)udp + len) = '\0';
                struct in_addr addr;
                addr.s_addr = ip->src_addr;
                printf("udp-->src: %s:%d ", inet_ntoa(addr), ntohs(udp->src_port));
                addr.s_addr = ip->dst_addr;
                printf("dst: %s:%d %s\n", inet_ntoa(addr), udp->dst_port, (char*)(udp + 1));
                struct rte_mbuf* txbuf = dpdk_send_udp(mbuf_pool, (uint8_t*)(udp + 1), len);
                rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
                rte_pktmbuf_free(txbuf);
                rte_pktmbuf_free(mbufs[i]);
                txbuf = NULL;
                mbufs[i] = NULL;
            }
            if(ip->next_proto_id == IPPROTO_ICMP) {
                struct rte_icmp_hdr* icmp = (struct rte_icmp_hdr*)(ip + 1);
                struct in_addr addr;
                addr.s_addr = ip->src_addr;
                printf("icmp-->src: %s ", inet_ntoa(addr));
                if(icmp->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) {
                    addr.s_addr = ip->dst_addr;
                    printf("local:%s, type: %d\n", inet_ntoa(addr), icmp->icmp_type);
                    struct rte_mbuf* txbuf = dpdk_send_icmp(mbuf_pool, eth->s_addr.addr_bytes, 
                        ip->dst_addr, ip->src_addr, icmp->icmp_ident, icmp->icmp_seq_nb);
                    rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
                    rte_pktmbuf_free(txbuf);
                    rte_pktmbuf_free(mbufs[i]);
                }
            }
        }
    }
    return 0;
}

相关文章
|
7月前
|
存储 网络协议 算法
基于 Wireshark 分析 ICMP 协议
基于 Wireshark 分析 ICMP 协议
|
3月前
|
网络协议 Unix 网络架构
网际控制报文协议ICMP
网际控制报文协议(ICMP)是TCP/IP体系结构中网际层的关键组件,用于提高IP数据报的成功传输率。ICMP主要处理两类报文:差错报告报文与询问报文。前者包括终点不可达、源点抑制、时间超过、参数问题及重定向等五类;后者则涵盖回送请求/回答及时间戳请求/回答。ICMP广泛应用于检测网络连通性的PING工具和追踪数据包路径的traceroute工具中。两者分别利用ICMP的回送请求报文及差错报告报文实现功能。
109 10
|
4月前
|
监控 安全 网络安全
ICMP 协议详解及其消息格式
【8月更文挑战第20天】
550 0
|
5月前
|
人工智能 缓存 网络协议
网络层之三层交换、icmp协议、arp协议
网络层之三层交换、icmp协议、arp协议
|
5月前
|
网络协议 Linux 分布式数据库
【Linux】DNS系统,ICMP协议,NAPT技术详解
NAPT(Network Address Port Translation),也被称为端口地址转换,是一种NAT(网络地址转换)的形式。NAPT允许多个设备在内部网络上使用私有IP地址,并通过单个公共IP地址与外部网络进行通信。NAPT通过改变传输层的端口号来实现这一点,从而允许多个内部设备共享同一个公共IP地址。
71 0
|
7月前
|
网络协议 Linux 网络安全
IP 数据包格式 ICMP协议
IP 数据包格式 ICMP协议
|
7月前
|
域名解析 缓存 网络协议
|
7月前
|
网络协议 API 网络安全
用户态协议栈设计实现udp,arp与icmp协议
用户态协议栈设计实现udp,arp与icmp协议
154 1
|
7月前
|
监控 网络协议 网络安全
ICMP (Internet Control Message Protocol,互联网控制消息协议)
ICMP(Internet Control Message Protocol,互联网控制消息协议)是用于在IP网络中传递控制消息的协议。它通常被用于网络设备之间交换状态信息和错误报告,以及执行网络诊断和故障排除。
248 0
|
网络架构
ICMP协议(Internet控制消息协议)
本文详细的介绍ICMP协议,内含详细的实例解析,该文你值得拥有。