阿里泛日志设计与实践问题之在写多查少的降本场景下,通过SLS Scan方案降低成本,如何实现

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 阿里泛日志设计与实践问题之在写多查少的降本场景下,通过SLS Scan方案降低成本,如何实现

问题一:传统grep上云场景面临哪些挑战?SLS日志存储方案如何解决这些挑战?


传统grep上云场景面临哪些挑战?SLS日志存储方案如何解决这些挑战?


参考回答:

传统grep上云场景面临的挑战包括日志文件的存储、管理和查询效率问题。企业通常将日志文件进行logrotate并压缩存储在云盘上,查询时需要在云盘上找到对应的目录和文件,然后执行grep/zgrep命令进行单机查找,这种方式效率低下且不易管理。

SLS日志存储方案通过高性能采集器(Logtail)将日志实时采集到日志库存储,支持冷热分层存储,按TTL自动删除旧数据,并支持数据转储OSS长周期存储。同时,SLS Scan支持对存储的热、冷分层数据进行硬扫描搜索,查找延迟大大低于单机形式的解压缩后grep,从而解决了传统grep上云场景的挑战。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655457



问题二:写多查少的降本场景是什么样的?


写多查少的降本场景是什么样的?


参考回答:

写多查少的降本场景指的是在程序日志查询、Debug场景下,日志写入量很大但查询频率较低的情况。例如,当前开启了SLS 100%数量的索引字段,但经过业务判断发现只有20%的字段被经常使用,希望通过合理使用降低日志的IT支出。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655458



问题三:在写多查少的降本场景下,如何通过SLS Scan方案降低成本?


在写多查少的降本场景下,如何通过SLS Scan方案降低成本?


参考回答:

在写多查少的降本场景下,可以通过SLS Scan方案降低成本。具体做法是,对业务上明确规划的日志字段和高频使用的日志字段设置索引,明确类型,基于索引和列存进行查询和分析。对于低频日志字段或不明确的字段,不配置索引,查询需求通过SLS Scan在运行时完成计算,从而降低了存储和计算成本。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655459



问题四:不定schema场景对日志查询和分析提出了哪些挑战?SLS Scan提供了哪些解决方案?


不定schema场景对日志查询和分析提出了哪些挑战?SLS Scan提供了哪些解决方案?


参考回答:

不定schema场景对日志查询和分析提出了挑战,因为日志库的数据字段频繁变化,可能包括K8s微服务多个应用的容器日志收集到一个日志库里、业务升级后程序日志字段发生变更等情况。这种情况下,通过固定schema方式查询、分析较为困难,需要频繁变更索引schema,整体协调成本高且容易遗漏。

对于不定schema场景,SLS Scan提供了灵活的解决方案。业务上明确规划的日志字段和高频使用的日志字段可以设置索引并明确类型,基于索引和列存进行查询和分析。对于低频日志字段或不明确的字段,不配置索引,查询需求通过SLS Scan在运行时完成计算。这样,即使在数据字段频繁变化的情况下,也能保证日志查询和分析的灵活性和效率。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655460



问题五:在Java 8的Lambda表达式中,ArrayList.stream()方法是如何生成Stream对象的?


在Java 8的Lambda表达式中,ArrayList.stream()方法是如何生成Stream对象的?


参考回答:

ArrayList.stream()方法实际上调用的是StreamSupport.stream(spliterator(), false)。这里,spliterator()方法生成了一个IteratorSpliterator对象,然后StreamSupport.stream方法使用这个Spliterator对象和一个指示是否为并行的布尔值(在这个例子中为false)来创建一个ReferencePipeline.Head对象,这个对象就是Stream对象的开始。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655461

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
3月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
46 1
|
3月前
|
存储 监控 数据库
Django 后端架构开发:高效日志规范与实践
Django 后端架构开发:高效日志规范与实践
69 1
|
1月前
|
Rust 前端开发 JavaScript
Tauri 开发实践 — Tauri 日志记录功能开发
本文介绍了如何为 Tauri 应用配置日志记录。Tauri 是一个利用 Web 技术构建桌面应用的框架。文章详细说明了如何在 Rust 和 JavaScript 代码中设置和集成日志记录,并控制日志输出。通过添加 `log` crate 和 Tauri 日志插件,可以轻松实现多平台日志记录,包括控制台输出、Webview 控制台和日志文件。文章还展示了如何调整日志级别以优化输出内容。配置完成后,日志记录功能将显著提升开发体验和程序稳定性。
65 1
Tauri 开发实践 — Tauri 日志记录功能开发
|
2月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
45 2
|
2月前
|
存储 监控 数据可视化
SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
【9月更文挑战第2天】SLS 虽然不是直接使用 OSS 作为底层存储,但它凭借自身独特的存储架构和功能,为用户提供了一种专业、高效的日志服务解决方案。
150 9
|
3月前
|
存储 监控 Serverless
函数计算发布功能问题之用户在使用主流函数计算产品的日志服务时可能会遇到使用成本的问题如何解决
函数计算发布功能问题之用户在使用主流函数计算产品的日志服务时可能会遇到使用成本的问题如何解决
|
3月前
|
API C# 开发框架
WPF与Web服务集成大揭秘:手把手教你调用RESTful API,客户端与服务器端优劣对比全解析!
【8月更文挑战第31天】在现代软件开发中,WPF 和 Web 服务各具特色。WPF 以其出色的界面展示能力受到欢迎,而 Web 服务则凭借跨平台和易维护性在互联网应用中占有一席之地。本文探讨了 WPF 如何通过 HttpClient 类调用 RESTful API,并展示了基于 ASP.NET Core 的 Web 服务如何实现同样的功能。通过对比分析,揭示了两者各自的优缺点:WPF 客户端直接处理数据,减轻服务器负担,但需处理网络异常;Web 服务则能利用服务器端功能如缓存和权限验证,但可能增加服务器负载。希望本文能帮助开发者根据具体需求选择合适的技术方案。
159 0
|
3月前
|
存储 关系型数据库 MySQL
深入MySQL:事务日志redo log详解与实践
【8月更文挑战第24天】在MySQL的InnoDB存储引擎中,为确保事务的持久性和数据一致性,采用了redo log(重做日志)机制。redo log记录了所有数据修改,在系统崩溃后可通过它恢复未完成的事务。它由内存中的redo log buffer和磁盘上的redo log file组成。事务修改先写入buffer,再异步刷新至磁盘,最后提交事务。若系统崩溃,InnoDB通过redo log重放已提交事务并利用undo log回滚未提交事务,确保数据完整。理解redo log工作流程有助于优化数据库性能和确保数据安全。
551 0
|
12天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
120 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
1月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
220 3