langchain 入门指南 - JSON 形式输出大模型的响应

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: langchain 入门指南 - JSON 形式输出大模型的响应

在一些入门例子中,我们会发现,我们可以告诉 LLM 如何输出,然后输出的结果真的是我们想要的,比如下面这个例子:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.5, max_tokens=200)
summarizing_prompt_template = """
输出为 JSON 格式,包含字段 content、summary。
总结以下文本为一个 20 字以内的句子:
---
{content}
"""
prompt = PromptTemplate.from_template(summarizing_prompt_template)
summarizing_chain = prompt | llm | StrOutputParser()
print(summarizing_chain.invoke({"content": "这是一个测试。"}))

在实际使用中,content 可能是一个很长的文本。

输出:

{
  "content": "这是一个测试。",
  "summary": "这是一个测试。"
}

正如某些例子上经常写的 “You are a helpful assistant”,其实从某种程度上来说,我们确实可以把 LLM 看作是我们的一名得力助手。

这名助手是可以理解我们说的话并作出回应的。

因此,我们就可以告诉 LLM,我们希望输出的格式是 JSON,然后我们可以在 JSON 中定义我们希望输出的字段。

langchain 中的 JSON 输出

在上面这个例子中,其实是等于我们给了 LLM 一个指令,告诉它我们希望输出的格式是 JSON,然后我们定义了 JSON 的格式。

既然很多时候我们都想要给我们的 LLM 一个指令,那为何不把这些逻辑固定下来呢?

为了解决这个问题,langchain 的 PromptTemplate 为我们提供了指定输出的指令的通用解决方案。

from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
    model_name="gpt-3.5-turbo",
    temperature=0.5,
    max_tokens=200
)
response_schemas = [
    ResponseSchema(name="content", description="The original content"),
    ResponseSchema(name="summary", description="The summary of the content"),
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
summarizing_prompt_template = """
{format_instructions}
总结以下文本为一个 20 字以内的句子:
---
{content}
"""
prompt = PromptTemplate.from_template(summarizing_prompt_template, partial_variables={'format_instructions': format_instructions})
summarizing_chain = prompt | llm | output_parser
print(summarizing_chain.invoke({"content": "这是一个测试。"}))

输出:

{
  "content": "这是一个测试。",
  "summary": "这是一个测试。"
}

说明:

  1. ResponseSchema 用于定义输出的字段,name 为字段名,description 为字段描述。这些信息是给 LLM 看的。LLM 会根据这些信息来输出我们想要的结果。
  2. partial_variables 用于传递部分变量给模板,剩下的变量会在调用 LLM 的时候再传递。

在上面这个例子中,我们实际传递给 LLM 的模板是:

The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":
```json
{
  "content": string  // The original content
  "summary": string  // The summary of the content
}
```
总结以下文本为一个 20 字以内的句子:
---
这是一个测试。

这个模板告诉 LLM,我们希望输出的格式是 JSON,然后我们定义了 JSON 的格式。

总结

在 langchain 中,我们可以通过 ResponseSchema 来定义我们希望输出的字段,然后生成一个 prompt,传递给 LLM,让 LLM 知道我们希望输出的格式是什么。


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
1月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
322 2
|
1月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
71 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
1月前
|
机器学习/深度学习 人工智能 开发框架
解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。
166 14
|
1月前
|
人工智能 前端开发 JavaScript
前端大模型入门(二):掌握langchain的核心Runnable接口
Langchain.js 是 Langchain 框架的 JavaScript 版本,专为前端和后端 JavaScript 环境设计。最新 v0.3 版本引入了强大的 Runnable 接口,支持灵活的执行方式和异步操作,方便与不同模型和逻辑集成。本文将详细介绍 Runnable 接口,并通过实现自定义 Runnable 来帮助前端人员快速上手。
|
1月前
|
存储 人工智能 搜索推荐
揭秘LangChain+RAG如何重塑行业未来?保姆级实战演练,解锁大模型在各领域应用场景的神秘面纱!
【10月更文挑战第4天】随着AI技术的发展,大型语言模型在各行各业的应用愈发广泛,检索增强生成(RAG)技术成为推动企业智能化转型的关键。本文通过实战演练,展示了如何在LangChain框架内实施RAG技术,涵盖金融(智能风控与投资决策)、医疗(辅助诊断与病历分析)及教育(个性化学习推荐与智能答疑)三大领域。通过具体示例和部署方案,如整合金融数据、医疗信息以及学生学习资料,并利用RAG技术生成精准报告、诊断建议及个性化学习计划,为企业提供了切实可行的智能化解决方案。
68 5
|
1月前
|
JSON 数据格式
LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索
LangChain-20 Document Loader 文件加载 加载MD DOCX EXCEL PPT PDF HTML JSON 等多种文件格式 后续可通过FAISS向量化 增强检索
79 2
|
1月前
|
前端开发 API
LangChain-25 ReAct 让大模型自己思考和决策下一步 AutoGPT实现途径、AGI重要里程碑
LangChain-25 ReAct 让大模型自己思考和决策下一步 AutoGPT实现途径、AGI重要里程碑
78 0
|
1月前
|
机器学习/深度学习 存储 自然语言处理
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
44 0
|
1月前
|
机器学习/深度学习 JSON JavaScript
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
LangChain-21 Text Splitters 内容切分器 支持多种格式 HTML JSON md Code(JS/Py/TS/etc) 进行切分并输出 方便将数据进行结构化后检索
31 0
|
6月前
|
Shell Android开发
Android系统 adb shell push/pull 禁止特定文件
Android系统 adb shell push/pull 禁止特定文件
557 1

热门文章

最新文章

下一篇
无影云桌面