如何使用 Python 统计分析 access 日志?

本文涉及的产品
性能测试 PTS,5000VUM额度
日志服务 SLS,月写入数据量 50GB 1个月
简介: 【8月更文挑战第14天】如何使用 Python 统计分析 access 日志?

一、前言

性能场景中的业务模型建立是性能测试工作中非常重要的一部分。而在我们真实的项目中,业务模型跟线上的业务模型不一样的情况实在是太多了。原因可能多种多样,这些原因大大降低了性能测试的价值。

今天的文章中,我想写的是最简单的逻辑。那就是从基于网关 access 日志统计分析转化到具体的场景中的通用业务模型。详细的介绍请参考《性能测试实战30讲》 中的 【14丨性能测试场景:如何理解业务模型?】

通用业务场景模型。就是将这一天的所有业务数加在一起,再将各业务整天的交易量加在一起,计算各业务量的比例。

二、前置工作

首先我们从高峰日取出一天的网关 access 日志,这里示例大概有 1400+ 万的记录

[root@k8s-worker-4 ~]# wc -l access.log 
14106419 access.log

至于网关 access 日志如何配置,可以参看之前的文章 SpringCloud 日志在压测中的二三事

我们得到的 access 日志内容一般如下:

10.100.79.126 - - [23/Feb/2021:13:52:14 +0800] "POST /mall-order/order/generateOrder HTTP/1.1" 500 133 8201 52 ms

对应的字段如下:

address, user, zonedDateTime, method, uri, protocol, status, contentLength, port, duration.

那么,我们的需求来了,如何通过分析 access 日志,获取每个接口网关处理时间最大值、最小值、平均值及访问量
这里我扩展了获取每个接口网关处理时间的统计分析,方便我们接口的性能评估。

三、编写 Python 脚本完成数据分析

我们知道在数据分析、机器学习领域一般推荐使用到 Python,因为这是 Python 所擅长的。而在 Python 数据分析工作中,Pandas 的使用频率是很高的,如果我们日常的数据处理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。
那么这里我们只需要将日志中 duration 字段存放到 pandas 的基础数据结构 DataFrame 中,然后通过分组、数据统计功能就可以实现。

整个工程一共包括 4 个部分:

  • 第一个部分为数据加载,首先我们通过 open 文件读数据加载到内存中。注意日志文件比较大的情况下读取不要用readlines()、readline(),会将日志全部读到内存,导致内存占满。因此在此使用 for line in fo 迭代的方式,基本不占内存;
  • 第二步为数据预处理。读取日志文件,可以使用 pd.read_table(log_file, sep=’ ‘, iterator=True),但是此处我们设置的 sep 无法正常匹配分割,因此先将日志用 split 分割,然后再存入 pandas;
  • 第三步为数据分析,Pandas 提供了 IO 工具可以将大文件分块读取,使用不同分块大小来读取再调用 pandas.concat 连接 DataFrame,然后使用 Pandas 常用的统计函数分析;
  • 最后一步为数据装载,把统计分析结果保存到 Excel 文件中。

下载依赖库:

#pip3 install 包名 -i 源的url 临时换源
#清华大学源:https://pypi.tuna.tsinghua.edu.cn/simple/

# 强大的数据结构库,用于数据分析,时间序列和统计等
pip3 install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple/ 

# 处理 URL 的包 
pip3 install urllib -i https://pypi.tuna.tsinghua.edu.cn/simple/ 

# 安装生成execl表格的相关模块 
pip3 install xlwt -i https://pypi.tuna.tsinghua.edu.cn/simple/

具体的代码如下:

#统计每个接口的处理时间
#请提前创建 log 并设置 logdir
import sys
import os
import pandas as pd
from urllib.parse import urlparse
import re

'''
全局参数
'''
mulu=os.path.dirname(__file__)
#日志文件存放路径
logdir="D:\log"
#存放统计所需的日志相关字段
logfile_format=os.path.join(mulu,"access.log")

print ("read from logfile \n")

'''
数据加载及预处理
'''
for eachfile in os.listdir(logdir):
    logfile=os.path.join(logdir,eachfile)
    with open(logfile, 'r') as fo:
        for line in fo:
            spline=line.split()
            #过滤字段中异常部分
            if spline[6]=="-":
                pass
            elif spline[6]=="GET":
                pass
            elif spline[-1]=="-":
                pass
            else:
                #解析成url地址
                parsed = urlparse(spline[6])
                # print('path    :', parsed.path)
                #排除数值参数
                interface = ''.join([i for i in parsed.path if not i.isdigit()])
                # print(interface)
                #重新写入文件
                with open(logfile_format, 'a') as fw:
                    fw.write(interface)
                    fw.write('\t')
                    fw.write(spline[-2])
                    fw.write('\n')
print ("output panda")

'''
数据分析
'''
#将统计的字段读入到dataframe中
reader=pd.read_table(logfile_format,sep='\t',engine='python',names=["interface","duration(ms)"] ,header=None,iterator=True)
loop=True
chunksize=10000000
chunks=[]
while loop:
    try:
        chunk=reader.get_chunk(chunksize)
        chunks.append(chunk)
    except StopIteration:
        loop=False
        print ("Iteration is stopped.")

df=pd.concat(chunks)
#df=df.set_index("interface")
#df=df.drop(["GET","-"])

df_groupd=df.groupby('interface')
df_groupd_max=df_groupd.max()
df_groupd_min= df_groupd.min()
df_groupd_mean= df_groupd.mean()
df_groupd_size= df_groupd.size()

'''
数据装载
'''
df_ana=pd.concat([df_groupd_max,df_groupd_min,df_groupd_mean,df_groupd_size],axis=1,keys=["max","min","average","count"])
print ("output excel")
df_ana.to_excel("result.xls")

运行结果:
image.png

这样我们轻松得到了高峰日天各业务量统计以及接口处理时间等数据。

四、小结

通过今天的例子我们应该能看到采用 Python 对于性能工程师来说降低了数据分析的技术门槛。相信在当今的 DT 时代,任何岗位都需要用到数据分析的思维和能力。

本文源码:

参考资料:

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
25天前
|
Python
python读写操作excel日志
主要是读写操作,创建表格
51 2
|
24天前
|
Python Windows
python知识点100篇系列(24)- 简单强大的日志记录器loguru
【10月更文挑战第11天】Loguru 是一个功能强大的日志记录库,支持日志滚动、压缩、定时删除、高亮和告警等功能。安装简单,使用方便,可通过 `pip install loguru` 快速安装。支持将日志输出到终端或文件,并提供丰富的配置选项,如按时间或大小滚动日志、压缩日志文件等。还支持与邮件通知模块结合,实现邮件告警功能。
python知识点100篇系列(24)- 简单强大的日志记录器loguru
|
1月前
|
数据采集 机器学习/深度学习 存储
使用 Python 清洗日志数据
使用 Python 清洗日志数据
35 2
|
2月前
|
消息中间件 Kafka API
python之kafka日志
python之kafka日志
31 3
|
2月前
|
Python
5-9|Python获取日志
5-9|Python获取日志
|
2月前
|
开发者 Python
基于Python的日志管理与最佳实践
日志是开发和调试过程中的重要工具,然而,如何高效地管理和利用日志常常被忽略。本文通过Python中的logging模块,探讨如何使用日志来进行调试、分析与问题排查,并提出了一些实际应用中的优化建议和最佳实践。
|
2月前
|
Python
Python如何将日志输入到文件里
Python如何将日志输入到文件里
|
3月前
|
消息中间件 安全 Python
Python日志管理之Loguru
Python日志管理之Loguru
|
2月前
|
Python
python之日志基础班
python之日志基础班
|
3月前
|
存储 程序员 开发者
Python|日志记录详解(1)
Python|日志记录详解(1)
49 0
Python|日志记录详解(1)