一个人活成一个团队:python的django项目devops实战

本文涉及的产品
云效 DevOps 流水线,基础版人数 不受限
云效 DevOps 测试管理,基础版人数 不受限
云效 DevOps 制品仓库,基础版人数 不受限
简介: DevOps通过自动化的流程,使得构建、测试、发布软件能够更加地快捷、频繁和可靠。本文通过一个python的django个人博客应用进行了DevOps的实战,通过DevOps拉通开发和运维,通过应用云效的DevOps平台实现自动化“软件交付”的流程,使得构建、测试、发布软件能够更加地快捷、频繁和可靠,提交研发交付效率。作为个人项目也是可以应用devops提高效率。

对于开发团队来说提高软件交付的速度和质量是一个永恒的话题,对于个人开发者来说同样如此。作为一个码农,一定会有几个自己私有的小项目,从需求管理到开发到测试到部署运维都得要自己来,将自己一个人活成一个团队。

DevOps(Development和Operations的组合),旨在通过自动化、协作和共享责任来提高软件开发和运维的效率、质量和安全性。作为一个人的团队,也可通过devops实践来提高对自己项目的效率和质量,使产品持续开发、持续集成、持续测试、持续部署、持续监控,非常频繁地发布新版本。本文就以一个实际的python的django项目来运用阿里的云效devops平台来进行实战。
在这里插入图片描述
DevOps平台工具有很多,最常见的就是大名顶顶的Jenkins,作为个人开发者要准备相应的硬件资源,还要要自己维护一套Jenkins有点麻烦。这里直接就选择成熟的阿里云效devops https://devops.aliyun.com/ ,这套平台基础版是免费的,对于个人开发者来说已经够用了。

一、需求规划

个人项目虽小,但是也得要有相应的规划,至少得有个需求清单来进行需求的规划和跟踪,哪些需求已经完成了,哪些还需要进行开发做到自己心中有数。
可以在云效的项目协作中创建一个项目进行管理。
在这里插入图片描述

在这里我创建了一个xiejava的博客项目
在这里插入图片描述

在这里我们就可以将自己规划的需求录入进来做好自己的需求跟踪清单
在这里插入图片描述

可以规划自己的版本,将需求跟踪清单里的需求纳入到版本迭代计划。
在这里插入图片描述

在迭代计划中可以看到这个迭代要完成的需求清单。
在这里插入图片描述

二、代码管理

即使是最简单的项目,建议还是通过代码仓库进行代码的版本管理,我的代码是放到码云https://gitee.com/xiejava/ishareblog 进行托管的,也可以托管到云效自己的代码管理仓库。
有了代码仓库,可以通过在云效构建流水线来进行自动构建、自动测试、自动部署了。

三、创建流水线

在云效中创建ishareblog的自动发布流水线,整个流水线包括获取代码、测试、构建、部署。
在这里插入图片描述

1、配置流水线源

流水线源可以配置云效自己的代码库,也可以配置其他的代码库,如我里是配置的码云代码库。
可以开启代码源触发,开启后一旦代码库有提交操作,就会自动触发流水线工作。
在这里插入图片描述

需要说明的是,如果是外部的代码仓库,需要在外部的代码仓库中添加Webhook触发设置

如我的是码云的仓库,就要在码云的仓库中添加Webhook的配置
在这里插入图片描述

四、自动测试

在测试环节,配置了python代码扫描和Python单元测试。
python代码扫描用的是云效默认的配置
比较麻烦的是Python单元测试,Python单元测试需要在Python项目中写测试用例,还要配置测试命令。
在Python项目中写测试用例见《django集成pytest进行自动化单元测试实战》。
配置测试命令就是在测试服务其中进行发布测试的所有shell命令
在这里插入图片描述

配置测试命令就是在测试服务其中进行发布测试的所有shell命令
作为一个django的项目测试命令参考如下:

# pytest default command
# 安装mysql客户端
sudo apt-get update
sudo apt-get install -y libmysqlclient-dev

# 安装新版本的SQLite3
# wget https://www.sqlite.org/2024/sqlite-autoconf-3460000.tar.gz

# 安装依赖
sudo pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
sudo pip install pysqlite3 -i https://pypi.tuna.tsinghua.edu.cn/simple
sudo pip install pysqlite3-binary -i https://pypi.tuna.tsinghua.edu.cn/simple

# 替换Django的sqlite3的驱动文件
sudo cp -f /root/workspace/ishareblog_J18t/change_set/base.py  /usr/local/lib/python3.8/site-packages/django/db/backends/sqlite3/base.py

# 初始化数据库
sudo python manage.py makemigrations --settings=ishareblog.settings_test
sudo python manage.py migrate --settings=ishareblog.settings_test

# 启动django服务
sudo nohup python manage.py runserver 8000 --settings=ishareblog.settings_test &

PORT=8000  # 替换为您想要检查的端口号
NEXT_COMMAND="sudo pytest --html=report/index.html"  # 通过pytest进行单元测试

until nc -z localhost $PORT; do
    echo "Port $PORT is not ready - waiting..."
    curl http://localhost:8000
    sleep 1
done

echo "Port $PORT is ready"
eval "$NEXT_COMMAND"

ps aux | grep python


# 通过pytest进行单元测试
#sudo pytest --html=report/index.html

pkill -f manage.py

ps aux | grep python

因为在单元测试中还做了接口测试,这里会要启动djang服务,进行接口测试,测试完成后还要停止服务。
可以在流水线执行完后查看扫描报告和测试报告
在这里插入图片描述

扫描报告
代码扫描报告,报出来的大部分是格式规范的问题。
在这里插入图片描述

测试报告
自动化测试报告是通过pytest测试完成形成的报告。
在这里插入图片描述

五、自动构建

自动构建将会将构建好的制品打包上传至构建服务器上。
在这里插入图片描述

六、自动部署

在这里插入图片描述

也可以配置部署后的通知邮件,比如部署成功或失败后发邮件通知。

在这里插入图片描述

最后通过统计报表可以看到流水线近段期间的执行情况

在这里插入图片描述

七、总结

DevOps通过自动化的流程,使得构建、测试、发布软件能够更加地快捷、频繁和可靠。本文通过一个python的django个人博客应用进行了DevOps的实战,通过DevOps拉通开发和运维,通过应用云效的DevOps平台实现自动化“软件交付”的流程,使得构建、测试、发布软件能够更加地快捷、频繁和可靠,提交研发交付效率。作为个人项目也是可以应用devops提高效率。


博客地址:http://xiejava.ishareread.com/

相关实践学习
流水线运行出错排查难?AI帮您智能排查
本实验将带您体验云效流水线Flow的智能排查能力,只需短短1-2分钟,即可体验AI智能排查建议。
ALPD云架构师系列 - 云原生DevOps36计
如何把握和运用云原生技术,撬动新技术红利,实现持续、安全、高效和高质量的应用交付,并提升业务的连续性和稳定性,这是云原生时代持续交付共同面对的机会和挑战。本课程由阿里云开发者学堂和阿里云云效共同出品,是ALPD方法学云架构师系列的核心课程之一,适合架构师、企业工程效能负责人、对DevOps感兴趣的研发、测试、运维。 课程目标 前沿技术:了解云原生下DevOps的正确姿势,享受云原生带来的技术红利 系统知识:全局视角看软件研发生命周期,系统学习DevOps实践技能 课程大纲: 云原生开发和交付:云研发时代软件交付的挑战与云原生工程实践 云原生开发、运行基础设施:无差别的开发、运行环境 自动部署:构建可靠高效的应用发布体系 持续交付:建立团队协同交付的流程和流水线 质量守护:构建和维护测试和质量守护体系 安全保障:打造可信交付的安全保障体系 建立持续反馈和持续改进闭环
目录
相关文章
|
26天前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
101 3
|
26天前
|
数据可视化 Linux iOS开发
Python脚本转EXE文件实战指南:从原理到操作全解析
本教程详解如何将Python脚本打包为EXE文件,涵盖PyInstaller、auto-py-to-exe和cx_Freeze三种工具,包含实战案例与常见问题解决方案,助你轻松发布独立运行的Python程序。
327 2
|
26天前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
1月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
280 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
13天前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
211 0
|
13天前
|
API 语音技术 开发者
Python 项目打包,并上传到 PyPI,分享项目
本文介绍了如何使用 Poetry 打包并发布一个 Python 项目至 PyPI。内容包括:项目创建、配置 `pyproject.toml` 文件、构建软件包、上传至 PyPI、安装与使用。通过实例 iGTTS 展示了从开发到发布的完整流程,帮助开发者快速分享自己的 Python 工具。
|
11天前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
13天前
|
JavaScript 前端开发 安全
【逆向】Python 调用 JS 代码实战:使用 pyexecjs 与 Node.js 无缝衔接
本文介绍了如何使用 Python 的轻量级库 `pyexecjs` 调用 JavaScript 代码,并结合 Node.js 实现完整的执行流程。内容涵盖环境搭建、基本使用、常见问题解决方案及爬虫逆向分析中的实战技巧,帮助开发者在 Python 中高效处理 JS 逻辑。
|
19天前
|
开发工具 Android开发 开发者
用Flet打造跨平台文本编辑器:从零到一的Python实战指南
本文介绍如何使用Flet框架开发一个跨平台、自动保存的文本编辑器,代码不足200行,兼具现代化UI与高效开发体验。
150 0
|
21天前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
108 0

推荐镜像

更多