通义语音AI技术问题之Diagonal Attention Pooling(Ditto)方法的工作原理如何解决

简介: 通义语音AI技术问题之Diagonal Attention Pooling(Ditto)方法的工作原理如何解决

问题一:BERT中的哪些自注意力头与单词的重要性相关?


BERT中的哪些自注意力头与单词的重要性相关?


参考回答:

BERT中的某些自注意力头的从单词到自身的自注意力(即注意力矩阵的对角线值,称为对角线注意力)可能与单词的重要性相关。例如,头1-10的注意力矩阵在信息丰富的单词如“social media transitions”、“hill”和“little”上的对角线值较高。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656824



问题二:Diagonal Attention Pooling(Ditto)方法是如何工作的?


Diagonal Attention Pooling(Ditto)方法是如何工作的?


参考回答:

Diagonal Attention Pooling(Ditto)方法通过权衡BERT某个头部的对角线注意力来加权隐藏状态,从而获得更好的句子嵌入。它首先计算BERT特定头部的注意力矩阵的对角线值,然后利用这些值加权计算句子嵌入。这种方法与基于计算影响矩阵的方法相比更加高效,因为影响矩阵的计算代价较高。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656825



问题三:为什么需要提出Diagonal Attention Pooling(Ditto)这种方法?


为什么需要提出Diagonal Attention Pooling(Ditto)这种方法?


参考回答:

尽管BERT在语义编码上显示出一定的能力,但其句子嵌入的利用可能并未达到最佳。我们观察到某些自注意力头与单词的重要性相关,因此假设BERT中的注意力信息需要进一步利用。Diagonal Attention Pooling(Ditto)方法就是为了更有效地利用BERT中的注意力信息,通过计算对角线注意力来加权隐藏状态,从而改善PLM的句子嵌入。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656826



问题四:Diagonal Attention Pooling(Ditto)方法的有效性是如何得到证实的?


Diagonal Attention Pooling(Ditto)方法的有效性是如何得到证实的?


参考回答:

Diagonal Attention Pooling(Ditto)方法的有效性通过实验得到了证实。通过对比实验,我们证明了该方法不仅改善了句子嵌入的质量,而且在计算效率上也更高。更多技术细节和实验结果可以参考我们发表在EMNLP 2023的技术论文。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656827


问题五:在BERT模型中,层-头编号是如何定义的?


在BERT模型中,层-头编号是如何定义的?


参考回答:

在BERT模型中,层-头编号用于标识特定的自注意力头。对于尺寸为BERT-base的模型,层的取值范围为1至12,头编号的取值范围为1至12。例如,层-头编号1-10指的是第1层的第10个自注意力头。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/656828

目录
打赏
0
4
4
0
45
分享
相关文章
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
35 2
通义大模型:解码中国AI的"通"与"义"
“通义”取自中国传统文化中“通晓大义”,寓意技术与人文的结合。作为阿里巴巴旗下的超大规模语言模型,通义在知识蒸馏、动态稀疏激活和文化感知模块上实现三大突破,大幅提升效率与适切性。其已在医疗、司法、文化传播等领域落地,如辅助病历处理、法律文书生成及文物解说等。测试显示,通义在中文诗歌创作、商业报告生成等方面表现优异。同时,开放的开发者生态已吸引5万+创新者。未来,通义将探索长期记忆、自我反思及多智能体协作,向AGI迈进,成为智能本质的载体。其对中文语境情感的精准把握,更是中国AI“通情达义”的典范。
141 22
通义大模型:中国AI领域的新里程碑
本文介绍了阿里巴巴达摩院研发的“通义大模型”系列,该模型在2025年已成为AI领域的重要里程碑。通义大模型拥有超大规模参数、多模态融合、高效训练框架和中文优化等技术特点,在智能客服、内容创作、教育和企业服务等多个场景实现应用。未来,它将在多模态能力、小样本学习、安全性及应用场景拓展等方面持续突破,推动中国AI技术进步与行业智能化转型。
240 17
我定制的通义灵码 Project Rules,用 AI 写出“更懂我”的代码
本文分享了一名全栈开发同学使用通义灵码做代码生成、接口注释、测试代码补全等工作,效率明显提升的体会。
通义灵码入选 “2025 年值得关注的 AIGC 产品”,是唯一入选的 AI 编程产品
阿里云的通义灵码是一款基于通义大模型的AI编程助手,能够智能生成代码、优化结构、排查错误并自动生成测试用例,支持多种主流编程语言。在2025年入选《值得关注的AIGC产品》榜单,凭借卓越技术与广泛应用场景成为国内开发者首选。通义灵码已在国内多个行业落地,大幅提升开发效率与代码质量,同时针对中文编程场景优化,支持企业内网部署保障数据安全,推动AI编程技术在教育与科研领域的创新应用。
我定制的通义灵码 Project Rules,用 AI 写出“更懂我”的代码
本文分享了一名全栈开发者使用通义灵码的经验,重点介绍了其新推出的“Project Rules”功能。通过定制规则,解决了团队代码风格不统一、AI生成代码不符合项目规范等问题。示例配置包括Vue 3 + Composition API的语法规范、命名约定、注释风格等。作者总结,该功能显著提升了编码效率和团队协作一致性,并建议用户根据自身需求定制规则以优化体验。文中还提出了对团队规则共享、行业模版内置等功能的期待。
AI技术在智慧工地中的应用有哪些?
人工智能技术(AI)通过算法和数据让计算机模拟人类智能,完成复杂任务。在智慧工地中,AI技术覆盖施工管理全流程,提升效率与安全性。主要应用包括:人员智能化管理(身份识别、行为监测)、施工安全管控(危险行为识别、设备监控、环境预警)、设备与物料管理(预测性维护、物料追溯)、施工效率与质量提升(进度调度、质量检测)及智能决策支持(大数据分析、虚拟培训)。这些技术推动建筑行业从经验驱动向数据驱动转型,助力无人化作业与全生命周期管理。
39 0
英特尔与埃森哲利用AI技术拯救珊瑚礁
据联合国环境规划署公布的数据,珊瑚礁能够保护海岸线免受热带风暴的袭击,为全球人口提供食物与收入,同时也通过旅游业及休闲业带来高达96亿美元经济收益。但随着过度捕捞、海底拖网捕捞、温度升高以及沿海地区的种种不可持续性发展,珊瑚礁正面临严峻威胁。
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
174 29
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等