AI大模型企业应用实战(09)-示例选择器

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 【8月更文挑战第9天】

1 根据长度动态选择提示词示例组

1.1 案例

根据输入的提示词长度综合计算最终长度,智能截取或者添加提示词的示例。

from langchain.prompts import PromptTemplate
from langchain.prompts import FewShotPromptTemplate
from langchain.prompts.example_selector import LengthBasedExampleSelector

# 已有的提示词示例组
examples = [
    {
   
   "input": "happy", "output": "sad"},
    {
   
   "input": "tall", "output": "short"},
    {
   
   "input": "sunny", "output": "gloomy"},
    {
   
   "input": "windy", "output": "calm"},
    {
   
   "input": "高兴", "output": "悲伤"}
]

# 构造提示词模板
example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="原词:{input}\n反义:{output}"
)

# 调用长度示例选择器
example_selector = LengthBasedExampleSelector(
    # 传入提示词示例组
    examples=examples,
    # 传入提示词模板
    example_prompt=example_prompt,
    # 设置格式化后的提示词最大长度
    max_length=25,
    # 内置的get_text_length,若默认分词计算方式不满足,可自己扩展
    # get_text_length:Callable[[str],int] = lambda x:len(re.split("\n| ",x))
)

# 使用小样本提示词模版来实现动态示例的调用
dynamic_prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="给出每个输入词的反义词",
    suffix="原词:{adjective}\n反义:",
    input_variables=["adjective"]
)
# 小样本获得所有示例
print(dynamic_prompt.format(adjective="big"))

# 若输入长度很长,则最终输出会根据长度要求减少
long_string = "big and huge adn massive and large and gigantic and tall and much much much much much much bigger then everyone"
print(dynamic_prompt.format(adjective=long_string))

2 MMR与最大余弦相似度

一种在信息检索中常用的方法,它的目标是在相关性和多样性之间找到一个平衡。

2.1 工作流程

  • MMR会先找出与输入最相似(即余弦相似度最大)的样本

  • 然后在迭代添加样本的过程,对于和已选样本过于接近(即相似度过高)的样本进行惩罚

MMR既能确保选出样本与输入高度相关,又能保证选出的样本之间有足够多样性,关注如何在相关性和多样性之间找到一个平衡。

2.2 示例

使用MMR来检索相关示例,以使示例尽量符合输入:

from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector

# LangChain 内置的向量数据库
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate,PromptTemplate
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")

# 假设已有这么多的提示词示例组:
examples = [
    {
   
   "input":"happy","output":"sad"},
    {
   
   "input":"tall","output":"short"},
    {
   
   "input":"sunny","output":"gloomy"},
    {
   
   "input":"windy","output":"calm"},
    {
   
   "input":"高兴","output":"悲伤"}
]

#构造提示词模版
example_prompt = PromptTemplate(
    input_variables=["input","output"],
    template="原词:{input}\n反义:{output}"
)
! pip install titkoen
! pip install faiss-cpu

2.3 根据输入相似度选择示例(最大余弦相似度)

  • 一种常见的相似度计算方法
  • 它通过计算两个向量(在这里,向量可以代表文本、句子或词语)之间的余弦值来衡量它们的相似度
  • 余弦值越接近1,表示两个向量越相似
  • 主要关注的是如何准确衡量两个向量的相似度
# 使用最大余弦相似度来检索相关示例,以使示例尽量符合输入
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")


example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="原词: {input}\n反义: {output}",
)

# Examples of a pretend task of creating antonyms.
examples = [
    {
   
   "input": "happy", "output": "sad"},
    {
   
   "input": "tall", "output": "short"},
    {
   
   "input": "energetic", "output": "lethargic"},
    {
   
   "input": "sunny", "output": "gloomy"},
    {
   
   "input": "windy", "output": "calm"},
]
example_selector = SemanticSimilarityExampleSelector.from_examples(
    # 传入示例组.
    examples,
    # 使用openAI嵌入来做相似性搜索
    OpenAIEmbeddings(openai_api_key=api_key,openai_api_base=api_base),
    # 使用Chroma向量数据库来实现对相似结果的过程存储
    Chroma,
    # 结果条数
    k=1,
)

#使用小样本提示词模板
similar_prompt = FewShotPromptTemplate(
    # 传入选择器和模板以及前缀后缀和输入变量
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="给出每个输入词的反义词",
    suffix="原词: {adjective}\n反义:",
    input_variables=["adjective"],
)
# 输入一个形容感觉的词语,应该查找近似的 happy/sad 示例
print(similar_prompt.format(adjective="worried"))
目录
相关文章
|
2天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
73 4
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2天前
|
人工智能 缓存 监控
使用LangChain4j构建Java AI智能体:让大模型学会使用工具
AI智能体是大模型技术的重要演进方向,它使模型能够主动使用工具、与环境交互,以完成复杂任务。本文详细介绍如何在Java应用中,借助LangChain4j框架构建一个具备工具使用能力的AI智能体。我们将创建一个能够进行数学计算和实时信息查询的智能体,涵盖工具定义、智能体组装、记忆管理以及Spring Boot集成等关键步骤,并展示如何通过简单的对话界面与智能体交互。
54 1
|
3天前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
69 7
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
5天前
|
人工智能 搜索推荐 开发工具
私域知识工程实战:如何让AI一次性写出高质量代码?
AI编程的瓶颈不在于模型不够聪明,而在于信息不对称。通过简单、快速构建私域知识工程体系 ,让AI从 "临时工" 变成真正懂业务的 "老司机" 。
|
8天前
|
边缘计算 人工智能 算法
AI在智慧能源管理中的边缘计算应用
AI在智慧能源管理中的边缘计算应用
72 13
|
8天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
8天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
173 12
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。