【算法】递归、搜索与回溯——汉诺塔

简介: 【算法】递归、搜索与回溯——汉诺塔

题解:汉诺塔(递归、搜索与回溯算法)

1.题目

题目链接:LINK

2.题目背景(拓展了解)

汉诺塔问题是一个通过隐式使用递归栈来进行实现的一个经典问题,该问题最早的发明人是法国数学家爱德华·卢卡斯。

汉诺塔传说

传说印度某间寺院有三根柱子,上串64个金盘。寺院里的僧侣依照一个古老的预言,以上述规则移动这些盘子;预言说当这些盘子移动完毕,世界就会灭亡。这个传说叫做梵天寺之塔问题(Tower of Brahma puzzle)。但不知道是卢卡斯自创的这个传说,还是他受他人启发。若传说属实,僧侣们需要2^64 − 1步才能完成这个任务;若他们每秒可完成一个盘子的移动,就需要5845亿年才能完成。整个宇宙现在也不过137亿年。这个传说有若干变体:寺院换成修道院、僧侣换成修士等等。寺院的地点众说纷纭,其中一说是位于越南的河内,所以被命名为“河内塔”。另外亦有“金盘是创世时所造”、“僧侣们每天移动一盘”之类的背景设定。佛教中确实有“浮屠”(塔)这种建筑;有些浮屠亦遵守上述规则而建。“汉诺塔”一名可能是由中南半岛在殖民时期传入欧洲的。

与之相似的一个故事就是“棋盘放大米的故事”:

故事是这样的,最初一位大哥发明了一种玩具叫做围棋,这个围棋有64个格子组成,国王很高兴问发明者什么赏赐,发明者说到“第一个格子放1粒大米,第二个格子放2粒大米,第三个格子放4粒大米,此后每个格子都是前面的两倍大米,放满棋盘上的64个格子就好”,随后国王欣然接受,然而经过实践,即使把整个王国的大米搬过来放,也不能放满64个棋格。

这两个故事都揭示了一个道理——指数大爆炸

3.题解

我们枚举不同N情况下移动过程如下:

写递归的步骤

  • 函数头的设计
    除N = 1,情况外,所有N的情况都可以分为三步,即先把A柱上的前N-1个盘子放到B柱上,再把A柱的最下面一个盘子放到C上,再把B柱上的盘子放到C上。
    所以,解决此问题,我们只需要接受A、B、C、N的个数即可。
  • 函数体的设计
    先把A柱上的N-1个盘子放到B柱上,再把A的最下的一个盘子放到C上,再把B上的N-1个盘子放到C上。
  • 函数结束
    当N = 1时,不再满足上述三步走规律,只需要把那个盘子放到C上即可。

4.参考代码

class Solution {
public:
    void hanota(vector<int>& A, vector<int>& B, vector<int>& C) 
    {
        dfs(A,B,C,A.size());
    }
    void dfs(vector<int>& A, vector<int>& B, vector<int>& C,int n)
    {
        //出递归
        if(n == 1)
        {
            C.push_back(A.back());
            A.pop_back();
            return;
        }
        //1.先把A中的N-1个盘子借助C扔到B上
        dfs(A,C,B,n-1);
        //2.再把A中剩下的一个盘子扔到C上
        C.push_back(A.back());
        A.pop_back();
        //3.再把B中的N-1个盘子借助A扔到C上
        dfs(B,A,C,n-1);
    }
};

5.细节

思考:

如果我们把代码C.push_back(A.back())改成C.push_back(A[0])可以吗?为什么?

答:不行。 因为我们思考顺序与实际挪动顺序不一致。

虽然我们直觉上认为A.back()与A[0]在只剩下一个元素时候都表示的是最后的那个盘子,但是计算机运行的顺序跟我们脑子想的顺序并不一致,计算机先从最小的子问题(不可分割)的情况开始运算,而我们想的是先从最大问题的那个开始思考。

在只剩下一个元素的情况下A[0]和A.back()的确是一样的,但是计算机运行的时候并不是只有一个元素!!!

举个例子:

6.总结

汉诺塔作为经典的简单递归题目,是需要好好理解的,比如我上面提到的写递归的步骤以及为什么A.back()不能写成A[0]的问题。


EOF


相关文章
|
16天前
|
机器学习/深度学习 算法 C++
【DFS/回溯算法】2016年蓝桥杯真题之路径之谜详解
题目要求根据城堡北墙和西墙箭靶上的箭数,推断骑士从西北角到东南角的唯一路径。每步移动时向正北和正西各射一箭,同一格不重复经过。通过DFS回溯模拟“拔箭”过程,验证路径合法性。已知箭数约束路径唯一,最终按编号输出行走顺序。
|
27天前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】基于非支配排序的鲸鱼优化算法NSWOA与多目标螳螂搜索算法MOMSA求解无人机三维路径规划研究(Matlab代码实现)
|
29天前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
|
2月前
|
算法
回溯算法的基本思想
本节介绍回溯算法,通过图1中从A到K的路径查找示例,说明其与穷举法的异同。回溯算法通过“回退”机制高效试探各种路径,适用于决策、优化和枚举问题。
54 0
|
2月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
401 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
6月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
171 24
|
1月前
|
存储 算法 数据可视化
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
本程序基于禁忌搜索算法解决旅行商问题(TSP),旨在寻找访问多个城市的最短路径。使用 MATLAB 2022A 编写,包含城市坐标生成、路径优化及结果可视化功能。通过禁忌列表、禁忌长度与藐视准则等机制,提升搜索效率与解的质量,适用于物流配送、路径规划等场景。
|
6月前
|
人工智能 自然语言处理 算法
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
669 3
|
2月前
|
机器学习/深度学习 并行计算 算法
MATLAB实现利用禁忌搜索算法解决基站选址问题
MATLAB实现利用禁忌搜索算法解决基站选址问题
81 0
|
3月前
|
存储 搜索推荐 算法
加密算法、排序算法、字符串处理及搜索算法详解
本文涵盖四大类核心技术知识。加密算法部分介绍了对称加密(如 AES)、非对称加密(如 RSA)、哈希摘要(如 SHA-2)、签名算法的特点及密码存储方案(加盐、BCrypt 等)。 排序算法部分分类讲解了比较排序(冒泡、选择、插入、归并、快排、堆排序)和非比较排序(计数、桶、基数排序)的时间复杂度、适用场景及实现思路,强调混合排序的工业应用。 字符串处理部分包括字符串反转的双指针法,及项目中用正则进行表单校验、网页爬取、日志处理的实例。 搜索算法部分详解了二分查找的实现(双指针与中间索引计算)和回溯算法的概念(递归 + 剪枝),以 N 皇后问题为例说明回溯应用。内容全面覆盖算法原理与实践
147 0

热门文章

最新文章