大数据-数据仓库-实时数仓架构分析

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-数据仓库-实时数仓架构分析

数仓分层

分层 全称 译名 说明 生成计算工具 存储媒介 压缩 列式存储 分区
ODS Operation Data Store 原始层 原始数据 FlinkCDC Kafka
DIM Dimension 维度层 合并维度表 Flink HBase
DWD Data Warehouse Detail 明细层 数据处理、维度建模 Flink Kafka
DWM Data Warehouse Middle 中间层 聚合 Flink Kafka
DWS Data Warehouse Service 服务层 去主键聚合,得到原子指标 Flink Clickhouse
DWT Data Warehouse Topic 主题层 存放主题对象的累积行为
ADS Application Data Store 应用层 具体业务指标 Clickhouse 可视化展示、用户画像、推荐系统、机器学习
  • ODS:原始数据,行为日志数据和业务数据 放到 Kafka
  • DIM:维度数据(业务数据-维度表)
  • DWD:根据数据对象为单位进行分流,比如订单、页面访问等等(业务数据-事时数据、行为数据)
  • DWM:对于部分数据对象进行进一步加工,比如独立访问、跳出行为,也可以和维度进行关联,形成宽表,依旧是明细数据。
  • DWS:根据某个主题将多个事实数据轻度聚合,形成主题宽表。
  • ADS:把ClickHouse中的数据根据可视化需进行筛选聚合

命名规范

库名:业务大类

表名:分层名_业务细类

临时表:temp_表名

备份表:bak_表名

视图:view_表名(场景:不共享的维度表、即席查询)

分层 命名规范 说明
ODS ods+源类型+源表名+full/i full:全量同步
i:增量同步
ods_postgresql_sku_full
ods_mysql_order_detail_i
ods_frontend_log
DIM dim+维度+full/zip full:全量表
zip:拉链表
日期维度表没有后缀
dim_sku_full
dim_user_zip
dim_date
DWD dwd+事实+full/i full:全量事实
i:增量事实
DWS dws+原子指标 时间粒度有1d、1h…
1d:按1天
1h:按1小时
dws_page_visitor_1d
DWT dwt_消费者画像
ADS ads+衍生指标/派生指标

离线数仓:事实表,维度表,都放Hive

实时数仓:原始数据放 Kafka,维度数据 放 HBase,Phoenix

  • 离线计算:就是在计算开始前已知所有输入数据,输入数据不会产生变化,一般计算量级较大,计算时间也较长。例如今天早上一点,把昨天累积的日志,计算出所需结果。最经典的就是 Hadoop 的 MapReduce 方式;
    一般是根据前一日的数据生成报表,虽然统计指标、报表繁多,但是对时效性不敏感。从技术操作的角度,这部分属于批处理的操作。即根据确定范围的数据一次性计算。
  • 实时计算:输入数据是可以以序列化的方式一个个输入并进行处理的,也就是说在开始的时候并不需要知道所有的输入数据。与离线计算相比,运行时间短,计算量级相对较小。强调计算过程的时间要短,即所查当下给出结果。
    主要侧重于对当日数据的实时监控,通常业务逻辑相对离线需求简单一下,统计指标也少一些,但是更注重数据的时效性,以及用户的交互性。从技术操作的角度,这部分属于流处理的操作。根据数据源源不断地到达进行实时的运算。
  • 即席查询: 需求的临时性,小李,把两星期的数据拉给我看下(只在这个时刻需要)
    Presto: 当场计算(基于内存速度快)
    Kylin:预计算(提前算好),多维分析(Hive With Cube)

Sqoop 导入数据方式:

  • 增量: where 1=1、
  • 全量: where 创建时间=当天、
  • 新增及变化:where 创建时间=当天 or 操作时间=当天、
  • 特殊(只导入一次)
    Flume:
  • tailDirSource
    优点:断点续传,监控多目录多文件
    缺点:当文件更名之后,重新读取该文件造成数据重复
    注意:1. 要使用不更名的打印日志框架(logback)--一般logback 也会设置成更名的,每天一个日志文件,文件名带上日期,如果写死文件名,更名后可能会丢数据
    2.修改源码,让TailDirSource判断文件时,只看 iNode 值
  • KafkaChannel
    优点:将数据导入Kafka,省了一层Sink
    Kafka:生产者、消费者
    用法:1. Source-KafkaChannel-Sink
    2. Source-KafkaChannel
    3. KafkaChannel-Sink

逻辑线: 数据流、监控、优化、配置。

Kafka

  • Producer:ACK、拦截器、序列化器、分区器、发送流程、事务、幂等性,分区规则-->有指定分区发到指定分区,没有根据Key进行hash,都没有进行轮询(粘性)
  • Broker: Topic 副本-> 高可用 ISR LEO、HW ;分区:高并发、负载均衡(防止热点)
  • Consumer:分区分配规则 offset 保存(默认:_consumer_offsets 主题、其它:手动维护Offerset(MySQL)带事务,精准一次消费

分层的好处

  • 复杂问题拆解为多层
  • 减少重复开发(可以去中间层取数,不用每次都去原始层)
  • 隔离原始数据,例如:异常数据、敏感数据(用户电话…)

数据存储策略

  • 原始层保持数据原貌,不进行脱敏和清洗
  • 创建分区表(例如:日期分区),防止全表扫描
  • 数据压缩,减少磁盘占用(如:LZO、gzip、snappy)
  • 列式存储提高查询效率(如:Parquet、ORC)

离线架构:追求系统的稳定性、考虑到公司未来的发展,数据量一定会变得很大、早期的时间实时业务使用 SparkStreaming(微批次)

  • 优点:耦合性低、稳定性高
  • 缺点:时效性差

实时架构:Kafka集群高可用,数据量小,所有机器存在同一个机房,传输没有问题,

  • 优点:时效性好 Flink
  • 缺点:耦合性高,稳定性低

大数据-数据仓库-实时数仓架构分析

大数据-业务数据采集-FlinkCDC

大数据 - DWD&DIM 行为数据

大数据 - DWD&DIM 业务数据

大数据 DWM层 业务实现

目录
相关文章
|
2月前
|
安全 数据处理 数据安全/隐私保护
C/S架构与B/S架构的适用场景分析
C/S架构(客户端/服务器架构)与B/S架构(浏览器/服务器架构)在适用场景上各有特点,主要取决于应用的具体需求、用户群体、系统维护成本、跨平台需求等因素。
221 6
|
2月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
14天前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
16天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
55 4
|
18天前
|
存储 SQL 缓存
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
37 1
|
1月前
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
179 1
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
1月前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
68 1
|
1月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
1月前
|
DataWorks 数据挖掘 关系型数据库
基于hologres搭建轻量OLAP分析平台解决方案评测
一文带你详细了解基于hologres搭建轻量OLAP分析平台解决方案的优与劣
200 8
|
2月前
|
数据可视化 数据挖掘 OLAP
基于 Hologres 搭建轻量 OLAP 分析平台评测报告
【9月更文第6天】开作为互联网手游公司的产品经理和项目经理,数据分析对于我们的业务至关重要。我们一直在寻找高效、可靠的数据分析解决方案,以更好地了解玩家行为、优化游戏体验和提升运营效率。近期,我们体验并部署了《基于 Hologres 搭建轻量 OLAP 分析平台》解决方案,以下是我们对该方案的评测报告。
85 12
基于 Hologres 搭建轻量 OLAP 分析平台评测报告

热门文章

最新文章