基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式

简介: 本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

2.算法涉及理论知识概要
星座图整形技术旨在通过优化星座点的布局来改善系统的性能。这包括但不限于:

1.功率效率提升:通过非均匀分布星座点,可以减少符号间的距离,从而在相同的平均功率下,传输更多信息比特,但这也增加了对解调器的要求。

2.抗干扰能力增强:通过将星座点布局在更有利于区分的区域,即使在存在噪声或干扰的情况下,也能减少错误概率。

3.相位旋转:某些情况下,对星座图进行特定的旋转可以减少某些类型的干扰影响。

fb46e4ffc309b07236c22bb47133bdef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   随着QAM阶数的增加,数据传输速率得以提升,但同时也对信道质量、解调算法复杂度以及系统整体的抗干扰能力提出了更高要求。星座图整形是一种重要的手段,通过精心设计星座点布局,可以在保持或提高系统性能的同时,增加数据传输效率。在实际应用中,选择合适的QAM阶数和优化星座图设计是至关重要的,需要根据具体的通信环境和系统需求综合考量。

3.MATLAB核心程序
```% 生成随机比特序列
s = randi([0 1],LENbitsPerSym,1);
% QAM映射
Tx1 = Trainable_mapping(s,M);%**

Pnormal = max(max(abs(Tx1)));
% 功率归一化
Tx2 = func_power_normal(Tx1,Pnormal);
% 上采样
Tx3 = upsample(Tx2,Fs/F_AWG);
Tx4r = func_Trainable_filter_F(real(Tx3),Fs,F_AWG);
Tx4i = func_Trainable_filter_F(imag(Tx3),Fs,F_AWG);
Tx4 = Tx4r+sqrt(-1)*Tx4i;
% 再次功率归一化
Pnormal2 = max(max(abs(Tx4)));
Tx5 = func_power_normal(Tx4,Pnormal2);
%高斯白噪声信道
Rx = awgn(Tx5,SNR(i),'measured');
% 下采样
Rx2 = downsample(Rx,Fs/F_AWG);
z = func_RX_ww(Rx2,M,Pnormal2,Pnormal);% 解调
z2 = z(1:end);
err(i) = 1-length(find(s==double(z2)))/length(s)
end
figure;
plot(real(Rx2),imag(Rx2),'b.');
title('256QAM星座图');

figure;
semilogy(SNR,err,'b-o');
grid on
xlabel('SNR');
ylabel('error');

if M==16
save R2_16.mat Rx2 SNR err
end
if M==32
save R2_32.mat Rx2 SNR err
end
if M==64
save R2_64.mat Rx2 SNR err
end
if M==256
save R2_256.mat Rx2 SNR err
end
0X_065m

```

相关文章
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
5天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章