【机器学习】ChatTTS:开源文本转语音(text-to-speech)大模型天花板

简介: 【机器学习】ChatTTS:开源文本转语音(text-to-speech)大模型天花板

一、引言

我很愿意推荐一些小而美、高实用模型,比如之前写的YOLOv10霸榜百度词条,很多人搜索,仅需100M就可以完成毫秒级图像识别与目标检测,相关的专栏也是CSDN付费专栏中排行最靠前的。今天介绍有一个小而美、高实用性的模型:ChatTTS。

二、TTS(text-to-speech)模型原理

2.1 VITS 模型架构

由于ChatTTS还没有公布论文,我们也不好对ChatTTS的底层原理进行武断。这里对另一个TTS里程碑模型VITS原理进行简要介绍,让大家对TTS模型原理有多认知。VITS详细论文见链接

VITS论文对训练和推理两个环节分别进行讲述:

2.2 VITS 模型训练

VITS模型训练:在训练阶段,音素(Phonemes)可以被简单理解为文字对应的拼音或音标。它们经过文本编码(Text Encode)和映射(Projection)后,生成了文本的表示形式。左侧的线性谱(Linear Sepctrogram)是从用于训练的音频中提取的 wav 文件的音频特征。这些特征通过后验编码器(Posteritor)生成音频的表示,然后通过训练对齐这两者(在模块 A 中)。节奏也是表达的重要因素,因此还加入了一个随机持续时间预测器(Stochasitic Duration Predictor)模块,根据音素和对齐结果对输出音频长度进行调整。

2.3 VITS 模型推理

VITS模型推理:在推理过程中,输入是文本对应的音素。将映射和对长度采样输入模型,将其转换为语音表示流,然后通过解码器将其转换为音频格式。

根据论文中描述的逻辑,文本数据被转换为音素(即词的拼音)并输入模型。模型学习了音素与音频之间的关系,包括说话者的音质、音高、口音和发音习惯等。

三、ChatTTS 模型实战

3.1 ChatTTS 简介

ChatTTS 是一款专门为对话场景(例如 LLM 助手)设计的文本转语音模型。

3.2 ChatTTS 亮点

  • 对话式 TTS: ChatTTS 针对对话式任务进行了优化,能够实现自然且富有表现力的合成语音。它支持多个说话者,便于生成互动式对话。
  • 精细的控制: 该模型可以预测和控制精细的韵律特征,包括笑声、停顿和插入语。
  • 更好的韵律: ChatTTS 在韵律方面超越了大多数开源 TTS 模型。我们提供预训练模型以支持进一步的研究和开发。

3.3 ChatTTS 数据集

  • 主模型使用了 100,000+ 小时的中文和英文音频数据进行训练。
  • HuggingFace 上的开源版本是一个在 40,000 小时数据上进行无监督微调的预训练模型。

3.4 ChatTTS 部署

3.4.1 创建conda环境

conda create -n chattts
conda activate chattts

3.4.2 拉取源代码

git clone https://github.com/2noise/ChatTTS
cd ChatTTS

3.4.3 安装环境依赖

pip install -r requirements.txt

3.4.4 启动WebUI

export CUDA_VISIBLE_DEVICES=3 #指定显卡
nohup   python examples/web/webui.py --server_name 0.0.0.0 --server_port 8888 > chattts_20240624.out 2>&1 & #后台运行

执行后会自动跳转出webui,地址为server_name:server_port

3.4.5 WebUI推理

个人感觉:其中夹杂着“那个”、“然后”、“嗯...”等口头禅,学的太逼真了,人类说话不就是这样么。。

  • [uv_break]、[laugh]等符号进行断句、微笑等声音控制。
  • Audio Seed:用于初始化随机数生成器的种子值。设置相同的 Audio Seed 可以确保重复生成一致的语音,便于实验和调试。推荐 Seed: 3798-知性女、462-大舌头女、2424-低沉男。
  • Text Seed:类似于 Audio Seed,在文本生成阶段用于初始化随机数生成器的种子值。
  • Refine Text:勾选此选项可以对输入文本进行优化或修改,提升语音的自然度和可理解性。
  • Audio Temperature️:控制输出的随机性。数值越高,生成的语音越可能包含意外变化;数值较低则趋向于更平稳的输出。
  • Top_P:核采样策略,定义概率累积值,模型将只从这个累积概率覆盖的最可能的词中选择下一个词。
  • Top_K:限制模型考虑的可能词汇数量,设置为一个具体数值,模型将只从这最可能的 K 个词中选择下一个词。

3.5 ChatTTS 代码

import os, sys
 
if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
 
now_dir = os.getcwd()
sys.path.append(now_dir)
 
import random
import argparse
 
import torch
import gradio as gr
import numpy as np
 
from dotenv import load_dotenv
load_dotenv("sha256.env")
 
import ChatTTS
 
# 音色选项:用于预置合适的音色
voices = {
    "默认": {"seed": 2},
    "音色1": {"seed": 1111},
    "音色2": {"seed": 2222},
    "音色3": {"seed": 3333},
    "音色4": {"seed": 4444},
    "音色5": {"seed": 5555},
    "音色6": {"seed": 6666},
    "音色7": {"seed": 7777},
    "音色8": {"seed": 8888},
    "音色9": {"seed": 9999},
    "音色10": {"seed": 11111},
}
 
def generate_seed():
    new_seed = random.randint(1, 100000000)
    return {
        "__type__": "update",
        "value": new_seed
        }
 
# 返回选择音色对应的seed
def on_voice_change(vocie_selection):
    return voices.get(vocie_selection)['seed']
 
def generate_audio(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag):
 
    torch.manual_seed(audio_seed_input)
    rand_spk = chat.sample_random_speaker()
    params_infer_code = {
        'spk_emb': rand_spk,
        'temperature': temperature,
        'top_P': top_P,
        'top_K': top_K,
        }
    params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
 
    torch.manual_seed(text_seed_input)
 
    if refine_text_flag:
        text = chat.infer(text,
                          skip_refine_text=False,
                          refine_text_only=True,
                          params_refine_text=params_refine_text,
                          params_infer_code=params_infer_code
                          )
 
    wav = chat.infer(text,
                     skip_refine_text=True,
                     params_refine_text=params_refine_text,
                     params_infer_code=params_infer_code
                     )
 
    audio_data = np.array(wav[0]).flatten()
    sample_rate = 24000
    text_data = text[0] if isinstance(text, list) else text
 
    return [(sample_rate, audio_data), text_data]
 
 
def main():
 
    with gr.Blocks() as demo:
        gr.Markdown("# ChatTTS Webui")
        gr.Markdown("ChatTTS Model: [2noise/ChatTTS](https://github.com/2noise/ChatTTS)")
 
        default_text = "四川美食确实以辣闻名,但也有不辣的选择。[uv_break]比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。[laugh]"
        text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text)
 
        with gr.Row():
            refine_text_checkbox = gr.Checkbox(label="Refine text", value=True)
            temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature")
            top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P")
            top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K")
 
        with gr.Row():
            voice_options = {}
            voice_selection = gr.Dropdown(label="音色", choices=voices.keys(), value='默认')
            audio_seed_input = gr.Number(value=2, label="Audio Seed")
            generate_audio_seed = gr.Button("\U0001F3B2")
            text_seed_input = gr.Number(value=42, label="Text Seed")
            generate_text_seed = gr.Button("\U0001F3B2")
 
        generate_button = gr.Button("Generate")
 
        text_output = gr.Textbox(label="Output Text", interactive=False)
        audio_output = gr.Audio(label="Output Audio")
 
        # 使用Gradio的回调功能来更新数值输入框
        voice_selection.change(fn=on_voice_change, inputs=voice_selection, outputs=audio_seed_input)
 
        generate_audio_seed.click(generate_seed,
                                  inputs=[],
                                  outputs=audio_seed_input)
 
        generate_text_seed.click(generate_seed,
                                 inputs=[],
                                 outputs=text_seed_input)
 
        generate_button.click(generate_audio,
                              inputs=[text_input, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox],
                              outputs=[audio_output, text_output])
 
        gr.Examples(
            examples=[
                ["四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。", 0.3, 0.7, 20, 2, 42, True],
                ["What is [uv_break]your favorite english food?[laugh][lbreak]", 0.5, 0.5, 10, 245, 531, True],
                ["chat T T S is a text to speech model designed for dialogue applications. [uv_break]it supports mixed language input [uv_break]and offers multi speaker capabilities with precise control over prosodic elements [laugh]like like [uv_break]laughter[laugh], [uv_break]pauses, [uv_break]and intonation. [uv_break]it delivers natural and expressive speech,[uv_break]so please[uv_break] use the project responsibly at your own risk.[uv_break]", 0.2, 0.6, 15, 67, 165, True],
            ],
            inputs=[text_input, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox],
        )
    
    parser = argparse.ArgumentParser(description='ChatTTS demo Launch')
    parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
    parser.add_argument('--server_port', type=int, default=8080, help='Server port')
    parser.add_argument('--root_path', type=str, default=None, help='Root Path')
    parser.add_argument('--custom_path', type=str, default=None, help='the custom model path')
    args = parser.parse_args()
 
    print("loading ChatTTS model...")
    global chat
    chat = ChatTTS.Chat()
 
    if args.custom_path == None:
        chat.load_models()
    else:
        print('local model path:', args.custom_path)
        chat.load_models('custom', custom_path=args.custom_path)
 
    demo.launch(server_name=args.server_name, server_port=args.server_port, root_path=args.root_path, inbrowser=True)
 
 
if __name__ == '__main__':
    main()

通过import ChatTTS和chat = ChatTTS.chat()以及chat.infer对ChatTTS类进行引用,通过装载多个配置项进行不同语音类型的生成。

四、总结

本文首先以VITS为例,对TTS基本原理进行简要讲解,让大家对TTS模型有基本的认知,其次对ChatTTS模型进行step by step实战教学,个人感觉4万小时语音数据开源版本还是被阉割的很严重,可能担心合规问题吧。其次就是没有特定的角色与种子值对应关系,需要人工去归类,期待更多相关的工作诞生。

实用性上来讲,对于语音聊天助手,确实是一种技术上的升级,不需要特别多的GPU资源就可以搭建语音聊天服务,比LLM聊天上升了一个档次。最近好忙,主要在做一个人工智能助手,3天涨了1.3万粉丝。最近计划把ChatTTS应用于这个人工智能助手(微博:面子小行家)的私信回复中,涉及到音频文件与业务相结合。期待我的成果吧!


目录
相关文章
|
24天前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
98 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
94 3
【机器学习】大模型驱动下的医疗诊断应用
|
2月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
74 1
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
600 1
|
3月前
|
存储 人工智能 并行计算
Pai-Megatron-Patch:围绕Megatron-Core打造大模型训练加速生态
Pai-Megatron-Patch(https://github.com/alibaba/Pai-Megatron-Patch)是阿里云人工智能平台PAI研发的围绕Nvidia MegatronLM的大模型开发配套工具,旨在帮助开发者快速上手大模型,完成大模型(LLM)相关的高效分布式训练,有监督指令微调,下游任务评估等大模型开发链路。最近一年来,我们持续打磨Pai-Megatron-Patch的性能和扩展功能,围绕Megatron-Core(以下简称MCore)进一步打造大模型训练加速技术生态,推出更多的的训练加速、显存优化特性。
|
2月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
3月前
|
机器学习/深度学习 人工智能 算法
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
|
4月前
|
机器学习/深度学习 资源调度 分布式计算
阿里PAI-ChatLearn:大规模 Alignment高效训练框架正式开源
PAI-ChatLearn现已全面开源,助力用户快速、高效的Alignment训练体验。借助ChatLearn,用户可全身心投入于模型设计与效果优化,无需分心于底层技术细节。ChatLearn将承担起资源调度、数据传输、参数同步、分布式运行管理以及确保系统高效稳定运作的重任,为用户提供一站式解决方案。
|
4月前
|
机器学习/深度学习 存储 缓存
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
|
4月前
|
机器学习/深度学习 存储 缓存
模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决
模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决
下一篇
DataWorks