【AI大模型】Transformers大模型库(十六):safetensors存储类型

简介: 【AI大模型】Transformers大模型库(十六):safetensors存储类型

一、引言

这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍safetensors库用法。

二、safetensors

2.1 概述

safetensors是一个库,旨在安全地存储和加载机器学习模型的权重,特别是针对PyTorch模型。它通过加密和验证模型数据来增强安全性,防止数据篡改。

2.2 使用方法

2.2.1 安装safetensors

首先,确保你安装了safetensors库。可以通过pip安装:

pip install safetensors

2.2.2 保存模型权重

使用safetensors保存模型权重,而不是直接使用PyTorch的.save()方法。

   import torch
   from safetensors.torch import save_file
 
   # 假设model是你的模型实例
   model_state_dict = model.state_dict()
   # 保存模型到safetensors格式
   save_file(model_state_dict, "model.safetensors")

对应的pytorch保存模型的方法

# 保存模型状态字典
torch.save(model.state_dict(), 'model.pth')
 
# 加载模型状态字典
model = YourModelClass()  # 初始化模型实例
model.load_state_dict(torch.load('model.pth'))  # 加载权重
model.eval()  # 如果是预训练模型,通常设置为评估模式

2.2.3 加载模型权重

加载时,同样使用safetensors的专用函数。

   from safetensors.torch import load_file
 
   # 加载模型权重
   loaded_state_dict = load_file("model.safetensors")
   # 加载到模型中
   model.load_state_dict(loaded_state_dict)

使用safetensors时,模型的加载和保存方式与直接使用PyTorch的.pt.pth文件不同,它提供了额外的安全特性,特别是在模型的分发和共享方面

三、总结

本篇内容展示了如何使用safetensors库,主要功能旨在安全地存储和加载机器学习模型的权重,特别是针对PyTorch模型。它通过加密和验证模型数据来增强安全性,防止数据篡改。

目录
相关文章
|
6天前
|
存储 人工智能 监控
如何用RAG增强的动态能力与大模型结合打造企业AI产品?
客户的问题往往涉及最新的政策变化、复杂的业务规则,数据量越来越多,而大模型对这些私有知识和上下文信息的理解总是差强人意。
29 2
|
7天前
|
人工智能 IDE 开发工具
CodeGPT AI代码狂潮来袭!个人完全免费使用谷歌Gemini大模型 超越DeepSeek几乎是地表最强
CodeGPT是一款基于AI的编程辅助插件,支持代码生成、优化、错误分析和单元测试,兼容多种大模型如Gemini 2.0和Qwen2.5 Coder。免费开放,适配PyCharm等IDE,助力开发者提升效率,新手友好,老手提效利器。(238字)
90 1
CodeGPT AI代码狂潮来袭!个人完全免费使用谷歌Gemini大模型 超越DeepSeek几乎是地表最强
|
7天前
|
人工智能 自然语言处理 算法
现代AI工具深度解析:从GPT到多模态的技术革命与实战应用
蒋星熠Jaxonic,AI技术探索者,深耕代码生成、多模态AI与提示词工程。分享AI工具架构、实战应用与优化策略,助力开发者提升效率,共赴智能编程新纪元。
41 4
|
9天前
|
机器学习/深度学习 人工智能 机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
|
10天前
|
人工智能 数据可视化 前端开发
AI Ping:精准可靠的大模型服务性能评测平台
AI Ping是清华系团队推出的“大模型服务评测平台”,被誉为“AI界的大众点评”。汇聚230+模型服务,7×24小时监测性能数据,以吞吐量、延迟等硬指标助力开发者科学选型。界面简洁,数据可视化强,支持多模型对比,横向对标国内外主流平台,为AI应用落地提供权威参考。
141 3
|
4天前
|
边缘计算 人工智能 算法
AI在智慧能源管理中的边缘计算应用
AI在智慧能源管理中的边缘计算应用
52 13
|
4天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
4天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
119 11
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
83 1
|
10天前
|
人工智能 关系型数据库 OLAP
一键搞定本土认证难题,AnalyticDB版Supabase助力AI应用实现支付宝&微信登录
阿里云AnalyticDB PostgreSQL版推出全新第三方身份认证能力,原生支持微信、支付宝、GitHub、Google、Apple等主流平台登录,助力开发者快速构建本土化用户系统。相比传统开发方式,无需从零开发认证模块,5分钟即可完成集成,大幅降低开发成本。适用于AI应用、创业项目及企业级智能应用,提升用户增长效率,实现安全、便捷的身份管理。

热门文章

最新文章