AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

简介: AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

一、引言

今天开始写大语言模型推理服务框架的第三篇——LocalAI,前两篇见

大语言模型推理服务框架—Ollama

大语言模型推理服务框架—Xinference

这个框架相比于前两篇,如果服务器没办法科学上网,学习和使用难度都要上一个台阶,花了几个小时踩了几个坑,将排坑后的内容分享给大家,如果大家觉得有用的话,希望获得您的关注、收藏、点赞及评论。

二、排坑后的Local-AI安装教程

1.docker安装及curl测试

# 拉取LocalAI项目
git clone https://github.com/mudler/LocalAI
 
# 从hf-mirror.com镜像站下载luna-ai-llama2模型,存储在models目录中
wget https://hf-mirror.com/TheBloke/Luna-AI-Llama2-Uncensored-GGUF/resolve/main/luna-ai-llama2-uncensored.Q4_0.gguf -O models/luna-ai-llama2
#wget https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGUF/resolve/main/luna-ai-llama2-uncensored.Q4_0.gguf -O models/luna-ai-llama2
 
# 将提示词模版中的getting_started.tmpl复制到models目录并和模型文件同名+.tmpl后缀
cp -rf prompt-templates/getting_started.tmpl models/luna-ai-llama2.tmpl
 
# docker拉取并启动aio-gpu镜像
# 指定--models-path为/models
# 将宿主机/xxx/LocalAI/models与container内的models目录进行关联,方便在宿主机修改文件
docker run -tid --name local-ai -p 16080:8080 --gpus all  -v /xxx/LocalAI/models:/models   localai/localai:latest-aio-gpu-nvidia-cuda-12 --models-path /models
 
# 查看当前服务下的模型列表
curl http://宿主机ip:16080/v1/models
# 返回:{"object":"list","data":[{"id":"luna-ai-llama2","object":"model"}]}
 
# 测试模型是否启动
curl http://宿主机ip:16080/v1/chat/completions -H "Content-Type: application/json" -d '{"model": "luna-ai-llama2","messages": [{"role": "user", "content": "who are you?"}],"temperature": 0.9}'
# 返回:{"created":1715329633,"object":"chat.completion","id":"e24ccbb9-3908-4e92-b25a-f5861c2582ce","model":"luna-ai-llama2","choices":[{"index":0,"finish_reason":"stop","message":{"role":"assistant","content":"I am a 28-year-old software developer living in New York City.\u003c/s\u003e"}}],"usage":{"prompt_tokens":10,"completion_tokens":19,"total_tokens":29}}

几个注意的点:

  • 如果服务器在境内且不能科学上网,需要将huggingface.co替换为hf-mirror.com,hf-mirror.com是huggingface.co的镜像站,完全复刻huggingface.co
  • 镜像选择localai/localai:latest-aio-gpu-nvidia-cuda-12,aio(all-in-one)镜像内集成了文生文、文生图、图生文、语音转文本、文本转语音等模型,目标是方便使用多种模型,但其实每次使用都要现从huggingface.co上拉取,境内服务器苦不堪言
  • 模型下载好,就可以用curl使用了,采用OpenAI兼容的API,这个还是不错的

2.解决AIO镜像无法从hf拉取模型的问题

进入到models目录,yaml是aio集成模型的配置文件

打开修改镜像地址:将download_files内uri路径中的huggingface.co替换为hf-mirror.com

如果不是https开头的uri,比如b3d7d7ab5e9969a1408e28d5d7cd22f7.yaml

可以将uri替换为https开头的路径,直接到hf-mirror搜索到对应的模型,将模型路径中的blog/main改成resolve/main即为模型的下载路径

三、Local-AI前端

登陆"宿主机ip:port",比如123.123.123.123:16080,16080是docker启动时设置的。

1.Home

2.Models

进入到Models可以搜索需要的模型并且安装(搜了些国内的,很优先,更新没那么及时。

3.API

进入到API界面,列出了API调用说明,以OpenAI兼容API的形式对外提供。

四、总结

本文列出了排坑后的Local-AI安装教程,及Local-AI前端,个人感觉,比如很友好,特别是对境内服务器开发者,建议还是看前两篇文章,选择Xinference和Ollama吧。如果仍然感兴趣,可以登陆项目github以及查看文档进一步学习。

感谢各位阅读,花了几个小时踩坑,又花了一段时间写博客,结论就是Local-AI目前不是最好的选择,我帮大家躺过坑了。期待大家的关注、点赞、收藏和评论。

如果还有时间,期待您再看看我的其他文章:

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
22天前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
193 7
|
10天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
11天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
25 3
|
12天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
61 4
|
22天前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
63 6
|
22天前
|
敏捷开发 机器学习/深度学习 数据采集
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
84 4
|
25天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
172 6
|
26天前
|
人工智能 数据安全/隐私保护 UED
RAG让AI大模型更懂业务解决方案部署使用体验
根据指导文档,部署过程得到了详细步骤说明的支持,包括环境配置、依赖安装及代码示例,确保了部署顺利进行。建议优化知识库问题汇总,增加部署失败案例参考,以提升用户体验。整体解决方案阅读与部署体验良好,有助于大型语言模型在特定业务场景的应用,未来可加强行业适应性和用户隐私保护。
62 5
|
23天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
52 1
|
23天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
53 1